Project description:DNA methylation at the 5 position of cytosine (5mC) in the mammalian genome is a key epigenetic event critical for various cellular processes. The ten-eleven translocation (Tet) family of 5mC-hydroxylases, which convert 5mC to 5-hydroxymethylcytosine (5hmC), offers a way for dynamic regulation of DNA methylation. Here we report that Tet1 binds to unmodified C or 5mC- or 5hmC-modified CpG-rich DNA through its CXXC domain. Genome-wide mapping of Tet1 and 5hmC reveals mechanisms by which Tet1 controls 5hmC and 5mC levels in mouse embryonic stem cells (mESCs). We also uncover a comprehensive gene network influenced by Tet1. Collectively, our data suggest that Tet1 controls DNA methylation both by binding to CpG-rich regions to prevent unwanted DNA methyltransferase activity, and by converting 5mC to 5hmC through hydroxylase activity. This Tet1-mediated antagonism of CpG methylation imparts differential maintenance of DNA methylation status at Tet1 targets, ultimately contributing to mESC differentiation and the onset of embryonic development.
Project description:DNA methylation of C5-cytosine (5mC) in the mammalian genome is a key epigenetic event that is critical for various cellular processes. However, how the genome-wide 5mC pattern is dynamically regulated remains a fundamental question in epigenetic biology. The TET family of 5mC hydroxylases, which convert 5mC to 5-hydroxymethylcytosine (5hmC), have provided a new potential mechanism for the dynamic regulation of DNA methylation. The extent to which individual Tet family members contribute to the genome-wide 5mC and 5hmC patterns and associated gene network remains largely unknown. Here we report genome-wide mapping of Tet1 and 5hmC in mESCs and reveal a mechanism of action by which Tet1 controls 5hmC and 5mC levels in mESCs. In combination with microarray and mRNA-seq expression profiling, we identify a comprehensive yet intricate gene network influenced by Tet1. We propose a model whereby Tet1 controls DNA methylation both by binding to CpG-rich regions to prevent unwanted DNA methyltransferase activity, and by converting the existing 5mC to 5hmC through its enzymatic activity. This Tet1-mediated antagonism of CpG methylation imparts differential maintenance of DNA methylation status at Tet1 target loci, thereby providing a new regulatory mechanism for establishing the epigenetic landscape of mESCs, which ultimately contributes to mESC differentiation and the onset of embryonic development.
Project description:DNA methylation of C5-cytosine (5mC) in the mammalian genome is a key epigenetic event that is critical for various cellular processes. However, how the genome-wide 5mC pattern is dynamically regulated remains a fundamental question in epigenetic biology. The TET family of 5mC hydroxylases, which convert 5mC to 5-hydroxymethylcytosine (5hmC), have provided a new potential mechanism for the dynamic regulation of DNA methylation. The extent to which individual Tet family members contribute to the genome-wide 5mC and 5hmC patterns and associated gene network remains largely unknown. Here we report genome-wide mapping of Tet1 and 5hmC in mESCs and reveal a mechanism of action by which Tet1 controls 5hmC and 5mC levels in mESCs. In combination with microarray and mRNA-seq expression profiling, we identify a comprehensive yet intricate gene network influenced by Tet1. We propose a model whereby Tet1 controls DNA methylation both by binding to CpG-rich regions to prevent unwanted DNA methyltransferase activity, and by converting the existing 5mC to 5hmC through its enzymatic activity. This Tet1-mediated antagonism of CpG methylation imparts differential maintenance of DNA methylation status at Tet1 target loci, thereby providing a new regulatory mechanism for establishing the epigenetic landscape of mESCs, which ultimately contributes to mESC differentiation and the onset of embryonic development. Tet1 protein was depleted in J1 or E14 mouse ES cells by siRNA or shRNA treatment. Total RNA was purified and used to determine the global gene transcription profiles by microarray assays. The Tet1-regulated genes were identified by comparing the gene expression profiles of control and Tet1-depleted ES cells.
Project description:DNA methylation of C5-cytosine (5mC) in the mammalian genome is a key epigenetic event that is critical for various cellular processes. However, how the genome-wide 5mC pattern is dynamically regulated remains a fundamental question in epigenetic biology. The TET family of 5mC hydroxylases, which convert 5mC to 5-hydroxymethylcytosine (5hmC), have provided a new potential mechanism for the dynamic regulation of DNA methylation. The extent to which individual Tet family members contribute to the genome-wide 5mC and 5hmC patterns and associated gene network remains largely unknown. Here we report genome-wide mapping of Tet1 and 5hmC in mESCs and reveal a mechanism of action by which Tet1 controls 5hmC and 5mC levels in mESCs. In combination with microarray and mRNA-seq expression profiling, we identify a comprehensive yet intricate gene network influenced by Tet1. We propose a model whereby Tet1 controls DNA methylation both by binding to CpG-rich regions to prevent unwanted DNA methyltransferase activity, and by converting the existing 5mC to 5hmC through its enzymatic activity. This Tet1-mediated antagonism of CpG methylation imparts differential maintenance of DNA methylation status at Tet1 target loci, thereby providing a new regulatory mechanism for establishing the epigenetic landscape of mESCs, which ultimately contributes to mESC differentiation and the onset of embryonic development.
Project description:DNA methylation of C5-cytosine (5mC) in the mammalian genome is a key epigenetic event that is critical for various cellular processes. However, how the genome-wide 5mC pattern is dynamically regulated remains a fundamental question in epigenetic biology. The TET family of 5mC hydroxylases, which convert 5mC to 5-hydroxymethylcytosine (5hmC), have provided a new potential mechanism for the dynamic regulation of DNA methylation. The extent to which individual Tet family members contribute to the genome-wide 5mC and 5hmC patterns and associated gene network remains largely unknown. Here we report genome-wide mapping of Tet1 and 5hmC in mESCs and reveal a mechanism of action by which Tet1 controls 5hmC and 5mC levels in mESCs. In combination with microarray and mRNA-seq expression profiling, we identify a comprehensive yet intricate gene network influenced by Tet1. We propose a model whereby Tet1 controls DNA methylation both by binding to CpG-rich regions to prevent unwanted DNA methyltransferase activity, and by converting the existing 5mC to 5hmC through its enzymatic activity. This Tet1-mediated antagonism of CpG methylation imparts differential maintenance of DNA methylation status at Tet1 target loci, thereby providing a new regulatory mechanism for establishing the epigenetic landscape of mESCs, which ultimately contributes to mESC differentiation and the onset of embryonic development.
Project description:DNA methylation of C5-cytosine (5mC) in the mammalian genome is a key epigenetic event that is critical for various cellular processes. However, how the genome-wide 5mC pattern is dynamically regulated remains a fundamental question in epigenetic biology. The TET family of 5mC hydroxylases, which convert 5mC to 5-hydroxymethylcytosine (5hmC), have provided a new potential mechanism for the dynamic regulation of DNA methylation. The extent to which individual Tet family members contribute to the genome-wide 5mC and 5hmC patterns and associated gene network remains largely unknown. Here we report genome-wide mapping of Tet1 and 5hmC in mESCs and reveal a mechanism of action by which Tet1 controls 5hmC and 5mC levels in mESCs. In combination with microarray and mRNA-seq expression profiling, we identify a comprehensive yet intricate gene network influenced by Tet1. We propose a model whereby Tet1 controls DNA methylation both by binding to CpG-rich regions to prevent unwanted DNA methyltransferase activity, and by converting the existing 5mC to 5hmC through its enzymatic activity. This Tet1-mediated antagonism of CpG methylation imparts differential maintenance of DNA methylation status at Tet1 target loci, thereby providing a new regulatory mechanism for establishing the epigenetic landscape of mESCs, which ultimately contributes to mESC differentiation and the onset of embryonic development. To determine the genome-wide DNA methylation changes caused by Tet1 depletion in mouse ES cells. Tet1 protein was depleted by specific siRNA treatment. The DNA methylation levels in control and Tet1 siRNA-transfected ES cells were determined by targeted bisulfite sequencing.
Project description:DNA methylation of C5-cytosine (5mC) in the mammalian genome is a key epigenetic event that is critical for various cellular processes. However, how the genome-wide 5mC pattern is dynamically regulated remains a fundamental question in epigenetic biology. The TET family of 5mC hydroxylases, which convert 5mC to 5-hydroxymethylcytosine (5hmC), have provided a new potential mechanism for the dynamic regulation of DNA methylation. The extent to which individual Tet family members contribute to the genome-wide 5mC and 5hmC patterns and associated gene network remains largely unknown. Here we report genome-wide mapping of Tet1 and 5hmC in mESCs and reveal a mechanism of action by which Tet1 controls 5hmC and 5mC levels in mESCs. In combination with microarray and mRNA-seq expression profiling, we identify a comprehensive yet intricate gene network influenced by Tet1. We propose a model whereby Tet1 controls DNA methylation both by binding to CpG-rich regions to prevent unwanted DNA methyltransferase activity, and by converting the existing 5mC to 5hmC through its enzymatic activity. This Tet1-mediated antagonism of CpG methylation imparts differential maintenance of DNA methylation status at Tet1 target loci, thereby providing a new regulatory mechanism for establishing the epigenetic landscape of mESCs, which ultimately contributes to mESC differentiation and the onset of embryonic development. To determine the genome-wide distribution of Tet1 and 5hmC in mouse ES cells, as well as identify the gene transcription changes after Tet1 depletion. GSM706669-GSM706671: We used GST pull-down followed by deep sequencing to map the DNA bound by the Tet1 CXXC domain in vitro. We made two mutants that have a single point mutation (Cys574 to Ala or Cys586 to Ala) in the core CXXC domain to ascertain the essential role of the CXXC domain in DNA binding by comparing the sequencing profile of DNA bound by wild type CXXC with the profiles of the CXXC mutants. GSM706672-GSM706673: Tet1 ChIP-seq was performed to identify the genome-wide distribution of Tet1 in mouse ES cells. GSM706674-GSM706679: We performed hydroxymethylated DNA immunoprecipitation (hMeDIP)-seq combined with a shRNA-mediated gene depletion strategy. To identify the loci specific 5hmC regulation by Tet1, we compared the 5hmC genome-wide distributions in control (Luc shRNA) and Tet1-depleted (Tet1 shRNA2863) mouse ES cells. GSM706680-GSM706682: To identify the gene regulation network by Tet1, we compared the gene expression profiles of control (scramble shRNA) and Tet1-depleted (Tet1 shRNA 2863 and Tet1 shRNA 3387) mouse ES cells determined by mRNA-seq.
Project description:Stress is adverse experience that require constant adaptation to reduce the emotional and physiological burden, or "allostatic load", of an individual. Despite their everyday occurrence, a subpopulation of individuals is more susceptible to stressors, while others remain resilient with unknown molecular signatures. In this study, we investigated the contribution of the DNA modifications, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), underlying the individual differences in stress susceptibility and resilience. Genome-wide 5mC and 5hmC profiles from 3- and 6-month adult male mice that underwent various durations of social defeat were generated. In 3-month animals, 5mC and 5hmC work in parallel and do not distinguish between stress-susceptible and resilient phenotypes, while in 6-month animals, 5mC and 5hmC show distinct enrichment patterns. Acute stress responses may epigenetically "prime" the animals to either increase or decrease their predisposition to depression susceptibility. In support of this, re-exposure studies reveal that the enduring effects of social defeat affect differential biological processes between susceptible and resilient animals. Finally, the stress-induced 5mC and 5hmC fluctuations across the acute-chronic-longitudinal time course demonstrate that the negative outcomes of chronic stress do not discriminate between susceptible and resilient animals. However, resilience is more associated with neuroprotective processes while susceptibility is linked to neurodegenerative processes. Furthermore, 5mC appears to be responsible for acute stress response, whereas 5hmC may function as a persistent and stable modification in response to stress. Our study broadens the scope of previous research offering a comprehensive analysis of the role of DNA modifications in stress-induced depression.
Project description:Inner cell mass (ICM) cells of a blastocyst, the source of embryonic stem (ES) cells, are characterized by their unique ability to give rise to all cell types in adult organisms. The epigenomes of germ cells and developing zygotes undergo extensive reprogramming to acquire such a pluripotent state. A major reprogramming event during early embryonic development is the erasure and subsequent re-establishment of patterns of methylation at the 5-position of cytosine (5mC). The recent demonstration that Ten-eleven translocation family proteins, Tet1-3 have the capacity to convert 5mC to 5-hydroxymethylcytosine (5hmC) raises the possibility that 5hmC may act as an distinct epigenetic state contributing to dynamic changes in DNA methylation and transcriptional regulation during embryonic development. In ES cells, Tet1 is highly expressed and 5hmC is present at relatively high levels compared to most differentiated cells, but the functional significance of Tet1 and 5hmC in these pluripotent cells are not clear. Recently, a flurry of papers that profile the distribution of Tet1 and/or 5hmC across the genome of mouse ES cells provide new insights into the role of Tet proteins and 5hmC in regulating expression of genes related to pluripotency and cellular differentiation. Through integrative analyses of datasets from different groups, we reveal the common Tet1 and 5hmC targets in undifferentiated mouse ES cells, which suggest that Tet1 may play a key role in orchestrating the balance between pluripotent and lineage committed states.
Project description:DNA cytosine methylation (5mC) is indispensable for a number of cellular processes, including retrotransposon silencing, genomic imprinting, and X chromosome inactivation in mammalian development. Recent studies have focused on 5-hydroxymethylcytosine (5hmC), a new epigenetic mark or intermediate in the DNA demethylation pathway. However, 5hmC itself has no role in pluripotency maintenance in mouse embryonic stem cells (ESCs) lacking Dnmt1, 3a, and 3b. Here, we demonstrated that 5hmC accumulated on euchromatic chromosomal bands that were marked with di- and tri-methylated histone H3 at lysine 4 (H3K4me2/3) in mouse ESCs. By contrast, heterochromatin enriched with H3K9me3, including mouse chromosomal G-bands, pericentric repeats, human satellite 2 and 3, and inactive X chromosomes, was not enriched with 5hmC. Therefore, enzymes that hydroxylate the methyl group of 5mC belonging to the Tet family might be excluded from inactive chromatin, which may restrict 5mC to 5hmC conversion in euchromatin to prevent nonselective de novo DNA methylation.