Project description:The intestinal microbiota modulates host physiology and gene expression via mechanisms that are not fully understood. A recently discovered layer of gene expression regulation is N6-methyladenosine (m6A) and N6,2′ -O-dimethyladenosine (m6Am) modifications of mRNA. To unveil if these epitranscriptomic marks are affected by the gut microbiota, we performed methylated RNA-immunoprecipitation and sequencing (MeRIP-seq) to examine m6A-modifications in transcripts of mice displaying either a conventional, or a modified, or no gut microbiota and discovered that the microbiota has a strong influence on m6A- modifications in the cecum, and also, albeit to a lesser extent, in the liver, affecting pathways related to metabolism, inflammatory and antimicrobial responses . We furthermore analysed expression levels of several known writer and eraser enzymes and found the methyltransferase Mettl16 to be downregulated in absence of a microbiota. As a consequence, one of its targets, the S-adenosyl methionine synthase Mat2a was less expressed in mice without gut flora. We furthermore show that distinct commensal bacteria, Akkermansia muciniphila, Lactobacillus plantarum can affect specific m6A modifications. Together, we report here epitranscriptomic modifications as an additional level of interaction in the complex interplay between commensal bacteria and their host.
Project description:Hepatitis B virus (HBV) infection is a major health problem worldwide. Recent evidence suggests that some viruses can manipulate the infection process by packing specific viral and cellular components into exosomes, small nanometer-sized (30-150 nm) vesicles secreted from various cells. However, the impact of HBV replication on the content of exosomes produced by hepatocytes has not been fully delineated. In this work, an HBV-inducible cell line HepAD38 was used to directly compare changes in the protein content of exosomes secreted from HepAD38 cells with or without HBV replication. Exosomes were isolated from supernantants of HepAD38 cells cultured with or without doxycycline (dox) and their purity was confirmed by transmission electron microscopy (TEM) and Western immunoblotting assays. Ion-intensity based label-free LC-MS/MS quantitation technologies were applied to analyze protein content of exosomes from HBV replicating cells [referred as HepAD38 (dox-)-exo] and from HBV nonreplicating cells [referred as HepAD38 (dox+)-exo]. A total of 1412 exosomal protein groups were identified, among which the abundance of 35 proteins was significantly changed following HBV replication. Strikingly, 5 subunit proteins from the 26S proteasome complex, including PSMC1, PSMC2, PSMD1, PSMD7 and PSMD14 were consistently enhanced in HepAD38 (dox-)-exo. Bioinformatic analysis of differential exosomal proteins confirmed the significant enrichment of components involved in the proteasomal catabolic process. Proteasome activity assays further suggested that HepAD38 (dox-)-exo had enhanced proteolytic activity compared with HepAD38 (dox+)-exo. Furthermore, human peripheral monocytes incubated with HepAD38 (dox-)-exo induced a significantly lower level of IL-6 secretion compared with IL-6 levels from HepAD38 (dox+)-exo. Irreversible inhibition of proteasomal activity within exosomes restored higher production of IL-6 by monocytes, suggesting that transmission of proteasome subunit proteins by HepAD38 (dox-)-exo might modulate the production of pro-inflammatory molecules in the recipient monocytes. These results revealed the composition and potential function of exosomes produced during HBV replication, thus providing a new perspective on the role of exosomes in HBV-host interaction.
Project description:As early as 24 hours after RNA virus infection, up to 25% of all RNA molecules present in host cells are pathogenic viral RNA (vRNA), i.e. viral messenger RNA (vmRNA), viral genomic RNA (vgRNA), and double stranded replication intermediates (dsRNA). To prevent such a takeover of the host metabolism, the innate immune system of the infected organism must detect threat as soon as possible. When considering RNA viruses recognition, activation of timely proper immune response capable of sensing and neutralizing viral genetic material is crucial for cell survival. Viral nucleic acids are one of the strongest pathogen-associated molecular patterns (PAMPs), molecules causing particular immune system reactions. Human cells are armed with a variety of pattern recognition receptors (PRRs) responsible for PAMPs recognition. The main factors responsible for detecting foreign nucleic acids in mammalian cells have already been identified. For activation of any RNA sensor, detecting an abnormal molecular RNA pattern, not present under normal conditions, is obligatory. These patterns may be some chemical modification of RNA, or the absence of such one, specific secondary or tertiary RNA structure, particular sequence, or dsRNA that can derive from viral genome as it is in the case of dsRNA viruses or from annealed complementary RNA strands, which are generated as RNA virus replication intermediates. However, yet there is still very limited understanding of how different epitranscriptomic marks modulate host immune response. Therefore, we will attempt to comprehensively understand how chemical modifications of viral RNA influence its immunogenic potential and stability in infected cells. Moreover, we will study how epitranscriptomic marks deposited on viral RNAs shield transcripts from being recognized by host antiviral factors.