Project description:The identification of RNAs that are recognized by RNA-binding proteins (RNA-BPs) using techniques such as Crosslinking and Immunoprecipitation (CLIP) has revolutionized the genome-wide discovery of RNA-BP RNA targets. Among the different versions of CLIP that have been developed, the use of photoactivable nucleoside analogs has resulted in high efficiency photoactivable ribonucleoside-enhanced CLIP (PAR-CLIP) in vivo. Nonetheless, PAR-CLIP has not yet been applied in prokaryotes. To determine if PAR-CLIP can be used in prokaryotes, we determined suitable conditions for the incorporation of 4-thiouridine (4SU), a photoactivable nucleoside, into E. coli RNA and for the isolation of RNA crosslinked to RNA-BPs of interest. Applying this technique to Hfq, a well-characterized regulator of small RNA (sRNA)-messenger RNA (mRNA) interactions, we showed that PAR-CLIP identified most of the known sRNA targets of Hfq, as well as functionally relevant sites of Hfq-mRNA interactions at nucleotide resolution. Based on our findings, PAR-CLIP represents an improved method to identify both the RNAs and the specific regulatory sites that are recognized by RNA-BPs in prokaryotes.
Project description:We report the PAR-CLIP data for endogenous IGF2BP3 protein in colorectal carcinoma cell line (HCT116). In this study, we established an immunoprecipitation protocol to obtain highly pure endogenous IGF2BP3-RNA complexes and compared RNase cleavage conditions. The PAR-CLIP protocol was modified to use single adapter circular ligation approach to increase the efficiency in library preparation and reduce sequence bias. Moreover, we implemented the use of highly-sensitive infra-red (IR) fluorescent dyes instead of radioactive probes to visualize IGF2BP3-crosslinked RNAs. We named the modified method “IR-PAR-CLIP”.
Project description:We perform RNA-Seq to analyze gene expression profiles in HeLa TAF7 (WT) cytoplasmic extracts, which are the inputs of RIP-Seq and PAR-CLIP.
Project description:MiRNAs and other small noncoding RNAs (sncRNAs) are key players in post-transcriptional gene regulation. HIV-1 derived small noncoding RNAs (sncRNAs) have been described in HIV-1 infected cells, but their biological functions still remain to be elucidated. Here, we approached the question whether viral sncRNAs may play a role in the RNA interference (RNAi) pathway or whether viral mRNAs are targeted by cellular miRNAs in human monocyte-derived macrophages (MDM). The incorporation of viral sncRNAs and/or their target RNAs into RNA-induced silencing complex was investigated using photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP) as well as high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP), which capture Argonaute2-bound miRNAs and their target RNAs. HIV-1 infected monocyte-derived macrophages (MDM) were chosen as target cells, as they have previously been shown to express HIV-1 sncRNAs. In addition, we applied small RNA deep sequencing to study differential cellular miRNA expression in HIV-1 infected versus non-infected MDMs. PAR-CLIP and HITS-CLIP data demonstrated the absence of HIV-1 RNAs in Ago2-RISC, although the presence of a multitude of HIV-1 sncRNAs in HIV-1 infected MDMs was confirmed by small RNA sequencing. Small RNA sequencing revealed that 1.4% of all sncRNAs were of HIV-1 origin. However, neither HIV-1 derived sncRNAs nor putative HIV-1 target sequences incorporated into Ago2-RISC were identified, suggesting that HIV-1 sncRNAs are not involved in the canonical RNAi pathway nor is HIV-1 targeted by this pathway in HIV-1 infected macrophages.