Transcriptomics

Dataset Information

0

Transcriptome and proteome reveal the effects of asmA on efflux and metabolic functions in Enterobacter cloacae ST2260


ABSTRACT: Background: Efflux pumps are important cofactors for carbapenem resistance in Enterobacter cloacae. The regulatory mechanism by which asmA influences efflux pump function in this species remains unclear. This study explored the regulatory role of asmA on efflux pumps in carbapenem-resistant Enterobacter cloacae. Results: Sixteen carbapenem-resistant Enterobacter cloacae were collected. All strains carried blaNDM, 87.5% of which were blaNDM-1 and 12.5% were blaNDM-5. PAβN had weak inhibition on carbapenem resistance in ST78 and strong inhibition in ST2260. ST2260(CY-8) was still resistant to carbapenems after elimination of blaNDM and could be inhibited by PAβN. However, ST78(CY-9) lost its resistance to carbapenems. Knockout of asmA reduced the MIC of ST2260 by 16-fold. ST78 showed no such changes. Growth curves revealed impaired growth only in ST2260ΔasmA. Transcriptomics/qRT-PCR revealed no significantly altered acrAB-tolC or marA expression in either strain. Membrane proteomics detected AcrB loss specifically in ST2260ΔasmA. The loss of asmA affected a wide range of membrane proteins, especially OmpW. Molecular docking predicted that AsmA could bind to AcrB, with stronger binding energy in ST78. The buried area of the CY-8 model involved 110 contact residues, while the number of contacts of the CY-9 model increased to 144. The AsmA chain of the two models had 46 common contact residues, and the AcrB chain had 60 common contact residues. AcrB of ST78 generally carries the I277V mutation. Conclusion: asmA is highly conserved in Enterobacter cloacae. It has functional heterogeneity in different ST types. In ST2260, asmA can affect efflux pump-mediated carbapenem resistance. AsmA can regulate AcrAB-TolC not by affecting marA. It is predicted that AsmA can maintain the carbapenem resistance of Enterobacter cloacae ST2260 by helping AcrB anchor to the inner membrane. The difference in carbapenem resistance mediated by efflux pumps between ST78 and ST2260 suggests that ST78 commonly carries the AcrB I277V mutation, which is a key site for efflux of β-lactams.

ORGANISM(S): Enterobacter cloacae

PROVIDER: GSE304310 | GEO | 2025/08/08

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2025-02-27 | PXD052024 | Pride
2025-02-27 | PXD053955 | Pride
2023-10-18 | GSE236124 | GEO
2015-01-01 | GSE62045 | GEO
2023-01-05 | PXD034987 | Pride
2022-11-12 | E-MTAB-12353 | biostudies-arrayexpress
2022-07-01 | GSE207144 | GEO
2025-03-01 | GSE284138 | GEO
2025-02-20 | GSE288598 | GEO
| PRJNA1031126 | ENA