Transcriptomics

Dataset Information

0

Voluntary exercise alleviates neural functional deficits in Parkinson’s disease mice by inhibiting microglial ferroptosis via SLC7A11/ALOX12 axis


ABSTRACT: Microglia are more susceptible to ferroptosis compared to neurons and astrocytes, which may compromise their phagocytic and clearance capabilities of α-synuclein (α-syn) in Parkinson’s disease (PD). While the beneficial effects of physical exercise (PE) on reducing α-syn deposition in PD have been highlighted, the role of PE in modulating microglial ferroptosis remains unclear. This study focuses on the impact of exercise on inhibiting microglial ferroptosis and mitigating α-syn accumulation. We demonstrate that voluntary exercise effectively inhibits microglial ferroptosis. Mechanistically, PE-induced upregulation of SLC7A11 inhibits microglial ferroptosis by suppressing ALOX12, thereby enhancing microglial phagocytosis and clearance of α-syn, which is paralleled by improvements in neurological function in PD mice. Collectively, these findings not only underscore the critical role of microglial ferroptosis in the pathological progression of PD but also elucidate the molecular mechanism by which PE attenuates microglial ferroptosis via the SLC7A11/ALOX12 axis.

ORGANISM(S): Mus musculus

PROVIDER: GSE309457 | GEO | 2025/09/29

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2024-10-17 | PXD035146 | Pride
2021-08-13 | E-MTAB-7302 | biostudies-arrayexpress
2019-08-12 | GSE130683 | GEO
2025-01-07 | GSE285956 | GEO
2024-09-02 | BIOMD0000000615 | BioModels
2025-05-28 | PXD064117 | Pride
2020-01-15 | GSE142416 | GEO
2024-02-20 | PXD044806 | JPOST Repository
2024-02-20 | PXD041784 | JPOST Repository
2023-12-14 | GSE243536 | GEO