Spatial genome organization is associated with nematode programmed DNA elimination
Ontology highlight
ABSTRACT: Programmed DNA elimination (PDE) is a notable exception to genome integrity, characterized by significant DNA loss during development. In many nematodes, PDE is initiated by DNA double-strand breaks (DSBs), which lead to chromosome fragmentation and subsequent DNA loss. However, the mechanism of nematode programmed DNA breakage remains largely unclear. Interestingly, in the human and pig parasitic nematode Ascaris, no conserved motif or sequence structures are present at chromosomal breakage regions (CBRs), suggesting the recognition of CBRs may be sequence-independent. Using Hi-C, we revealed that Ascaris CBRs engage in three-dimensional (3D) interactions before PDE, indicating that physical contacts between break regions may contribute to the PDE process. The 3D interactions are established in both Ascaris male and female germlines, demonstrating inherent genome organization associated with the CBRs and to-be-eliminated sequences. In contrast, in the unichromosomal horse parasite Parascaris univalens, transient pairwise interactions between neighboring CBRs that will form the ends of future somatic chromosomes were observed only during PDE. Intriguingly, we found that Ascaris PDE, which converts 24 germline chromosomes into 36 somatic ones, induces specific compartmentalization changes. Remarkably, Parascaris PDE generates the same set of 36 somatic chromosomes, and the 3D compartment changes following PDE are consistent between the two species. Overall, our findings suggest that CBRs spatially demarcate the retained and eliminated DNA and may contribute to their spatial organization during Ascaris PDE. We also demonstrated that the 3D genome reorganization of the somatic chromosomes in these nematodes following PDE is evolutionary and developmentally conserved.
ORGANISM(S): Ascaris suum
PROVIDER: GSE314626 | GEO | 2025/12/24
REPOSITORIES: GEO
ACCESS DATA