Project description:Precise DNA replication is critical to the maintenance of genome stability, and the DNA replication machinery is a focal point of many current and upcoming chemotherapeutics. TrAEL-seq is a robust method for profiling DNA replication genome-wide that works in unsynchronised cells and does not require treatment with drugs or nucleotide analogues. Here, we provide an updated method for TrAEL-seq including multiplexing of up to 6 samples that dramatically improves sample quality and throughput, and we validate TrAEL-seq in multiple mammalian cell lines. The updated protocol is straightforward and robust yet provides excellent resolution comparable to OK-seq in mammalian cell samples, and does not require cell synchronisation, drug treatment, labelling or sorting. High resolution replication profiles can be obtained across large panels of samples and in dynamic systems, for example during the progressive onset of oncogene induced senescence. In addition to mapping zones where replication initiates and terminates, TrAEL-seq is sensitive to replication fork speed, revealing effects of both transcription and proximity to replication initiation zones on fork progression. Although forks move more slowly through transcribed regions, this does not have a significant impact on the broader dynamics of replication fork progression, which is dominated by rapid fork movement in long replication regions (>1Mb). Short and long replication regions are not intrinsically different, and instead replication forks accelerate across the first ~1 Mb of travel such that forks progress faster in the middle of regions lying between widely spaced initiation zones. We propose that this is a natural consequence of fewer replication forks being active later in S phase when these distal regions are replicated and there being less competition for replication factors.
Project description:Faithful replication of the entire genome requires replication forks to copy large contiguous tracts of DNA, and sites of persistent replication fork stalling present a major threat to genome stability. Understanding the distribution of sites at which replication forks stall, and the ensuing fork processing events, requires genome-wide methods that profile replication fork position and the formation of recombinogenic DNA ends. Here, we describe Transferase-Activated End Ligation sequencing (TrAEL-seq), a method that captures single-stranded DNA 3' ends genome-wide and with base pair resolution. TrAEL-seq labels both DNA breaks and replication forks, providing genome-wide maps of replication fork progression and fork stalling sites in yeast and mammalian cells. Replication maps are similar to those obtained by Okazaki fragment sequencing; however, TrAEL-seq is performed on asynchronous populations of wild-type cells without incorporation of labels, cell sorting, or biochemical purification of replication intermediates, rendering TrAEL-seq far simpler and more widely applicable than existing replication fork direction profiling methods. The specificity of TrAEL-seq for DNA 3' ends also allows accurate detection of double-strand break sites after the initiation of DNA end resection, which we demonstrate by genome-wide mapping of meiotic double-strand break hotspots in a dmc1Δ mutant that is competent for end resection but not strand invasion. Overall, TrAEL-seq provides a flexible and robust methodology with high sensitivity and resolution for studying DNA replication and repair, which will be of significant use in determining mechanisms of genome instability.