Genomics

Dataset Information

0

Detection of miRNAs in exosomes released by mouse immature and mature dendritic cells


ABSTRACT: Dendritic cells (DCs) are the most potent antigen (Ag)-presenting cells. Whereas immature DCs down-regulate T cell responses to induce/maintain immunological tolerance, mature DCs promote immunity. To amplify their functions, DCs communicate with neighboring DCs through soluble mediators, cell-to-cell contact and vesicle exchange. Transfer of nanovesicles (<100nm) derived from the endocytic pathway (termed exosomes) represents a novel mechanism of DC-to-DC communication. The facts that exosomes contain exosome-shuttle microRNAs (miRNAs), and DC functions can be regulated by exogenous miRNAs, suggest that DC-to-DC interactions could be mediated through exosome-shuttle miRNAs, an hypothesis that remains to be tested. Importantly, the mechanism of transfer of exosome-shuttle miRNAs from the exosome lumen to the cytosol of target cells is unknown. Here, we demonstrate that DCs release exosomes with different miRNAs depending on the maturation of the DCs. By visualizing spontaneous transfer of exosomes between DCs, we demonstrate that exosomes fused with the target DCs, the latter followed by release of the exosome content into the DC cytosol. Importantly, exosome-shuttle miRNAs are functional, as they repress target mRNAs of acceptor DCs. Our findings unveil a mechanism of transfer of exosome-shuttle miRNAs between DCs and its role as a means of communication and post-transcriptional regulation between DCs.

ORGANISM(S): Mus musculus

PROVIDER: GSE33179 | GEO | 2011/10/25

SECONDARY ACCESSION(S): PRJNA149195

REPOSITORIES: GEO

Similar Datasets

2011-10-24 | E-GEOD-33179 | biostudies-arrayexpress
2022-06-13 | GSE190854 | GEO
2012-04-15 | E-GEOD-25320 | biostudies-arrayexpress
2013-03-22 | E-GEOD-45375 | biostudies-arrayexpress
2013-03-22 | GSE45375 | GEO
2012-04-16 | GSE25320 | GEO
2016-04-30 | GSE72351 | GEO
2018-06-20 | PXD008773 | Pride
2013-12-03 | E-GEOD-45387 | biostudies-arrayexpress
2013-12-03 | E-GEOD-45388 | biostudies-arrayexpress