Project description:Global gene expression in HCT116p53-/- and HCT116p53+/+ cells HCT116p53-/- and p53+/+ were untreated and treated with P2 small molecule compound at 25 microM, total RNA was isolated and gene expression was analyzed using Illumina chips
Project description:Global gene expression in TT cells treated with FAK inhibitors TT cells were untreated and treated with Y15 small molecule FAK inhibitor at 10 microM or another FAK inhibitor PF04554878 at 10microM, total RNA was isolated and gene expression was analyzed using Illumina chips
Project description:There is an increasing demand for the expansion of functional human hematopoietic stem cells (hHSCs) for various clinical applications. Based on our primary screening of antioxidant small molecule compounds library, a small molecule compound C2968 (chrysin) was identificated to expand cord blood CD34+ cells in vitro. Then we further verified the optimum concentration and explored its effect on hHSCs phenotype and biological function. C2968 could significantly increase the proportion and absolute number of CD34+CD38-CD49f+ and CD34+CD38-CD45RA-CD90+ cells under 2.5 ?M. Furthermore, the total number of colony-forming units and the frequency of LT-HSCs in C2968-treated group were significantly higher than control, indicating the multipotency and long-term activity of hematopoietic stem and progenitor cells were sustained. Additionally, C2968 treatment could maintain transplantable HSCs that preserve balanced multilineage potential and promote rapid engraftment after transplantation in immunodeficient (NOG) mice. Mechanistically, the activity of chrysin might be mediated through multiple mechanisms namely delaying HSC differentiation, inhibiting ROS-activated apoptosis, and modulating of cyclin-dependent kinase inhibitors. Overall, chrysin showed good ex vivo expansion effect on hHSCs, which could maintain the self-renewal and multilineage differentiation potential of hHSCs. Through further research on its antioxidant mechanism, it may become a promising tool for further fundamental research and clinical umbilical cord blood transplantation of hHSCs.
Project description:Transcriptome analysis of early adipogenesis induced by basal adipogenesis medium(AM) and AM+Bex for 2 days in C2C12 cells Global gene expression profiling has shown Bex induced adipogenic genes expression change
Project description:Helicases have emerged as promising targets for the development of antiviral drugs; however, the family remains largely undrugged. To support the focused development of viral helicase inhibitors we identified, collected, and integrated all chemogenomics data for all available helicases from the ChEMBL database. After thoroughly curating and enriching the data with relevant annotations we have created a derivative database of helicase inhibitors which we dubbed Heli-SMACC (Helicase-targeting SMAll Molecule Compound Collection). The current version of Heli-SMACC contains 20,432 bioactivity entries for viral, human, and bacterial helicases. We have selected 30 compounds with promising viral helicase activity and tested them in a SARS-CoV-2 NSP13 ATPase assay. Twelve compounds demonstrated ATPase inhibition and a consistent dose-response curve. The Heli-SMACC database may serve as a reference for virologists and medicinal chemists working on the development of novel helicase inhibitors. Heli-SMACC is publicly available at https://smacc.mml.unc.edu.
Project description:Tauopathies are neurodegenerative diseases characterized by intracellular abnormal tau deposits in the brain. Tau aggregates can propagate from one neuron to another in a prion-like manner, mediated by the interaction between tau and cell surface heparan sulfate proteoglycans. We developed an AlphaScreen assay, with His-tagged tau and biotinylated heparin, to represent the tau-HS interface to target the tau-glycan interface. Using our AlphaScreen assay, with a Z-factor of 0.65, we screened ∼300 compounds and discovered a small-molecule compound (herein referred to as A9), which can disrupt the tau-heparin interaction with micromolar efficacy. A9 also effectively inhibited heparin-induced tau aggregation in Thioflavin T fluorescence assays and attenuated tau internalization by H4 neuroglioma cells. These results strongly suggest that A9 can disrupt the tau-glycan interface in both in vitro molecular and cellular environments. We further determined that A9 interacts with heparin rather than tau and does so with micromolar binding affinity as shown by nuclear magnetic resonance and surface plasmon resonance experiments. A9 binds to heparin in a manner that blocks the sites where tau binds to heparin on the cell surface. These results demonstrate our AlphaScreen method as an effective method for targeting the tau-glycan interface in drug discovery and A9 as a promising lead compound for tauopathies, including Alzheimer's disease.
Project description:Transcriptome analysis of early adipogenesis induced by basal adipogenesis medium(AM) and AM+Bex for 2 days in C2C12 cells Global gene expression profiling has shown Bex induced adipogenic genes expression change We analyzed 4 samples from basal adipogenesis medium(AM) and AM+Bex(10uM) treated C2C12 cells using the Affymetrix Mouse Gene 1.0 ST platform. Array data was processed by Affymetrix Expression Console and Transcriptome Analysis Console (TAC) software.
Project description:Discovery of the genome-wide location of proteins using ChIP-Seq has allowed global mapping of the key transcription factors and chromatin regulators that control gene expression programs in various cells. Many DNA-associated processes are targeted for disease therapy. This study investigates the functions of small molecule therapeutics that target DNA-associated processes involved of CDK9 and BRD4.