Genomics

Dataset Information

0

NFATc1 integrates STAT3 inflammatory signals to promote Kras(G12D)-driven carcinogenesis in the pancreas.


ABSTRACT: Inflammatory transcription networks have been linked with the development of pancreatic ductal adenocarcinoma (PDAC). Here, we demonstrate that NFATc1 is both necessary and sufficient to drive progression of KrasG12D-initiated PDAC, particularly in the context of inflammation. Significantly, nuclear NFATc1 accelerates PDAC development in KrasG12D mice, whereas conditional NFATc1 deletion or pharmacological inhibition attenuates inflammation-mediated carcinogenesis. Mechanistically, NFATc1 induces STAT3 expression, complex formation and signal integration in PDAC. Genome-wide ChIP-sequencing and expression analysis in cells derived from c.n.NFATc1;KrasG12D mice identified combinatorial NFATc1/STAT3 binding at chromatin enhancer sites and subsequent regulation of key molecules involved in oncogenic signaling, growth and inflammation. Together, this study supports the relevance of inflammatory transcription factor networks in pancreatic carcinogenesis and provides a theoretical platform for therapeutic targeting of NFATc1 nucleoprotein complexes in PDAC.

ORGANISM(S): Mus musculus

PROVIDER: GSE39969 | GEO | 2014/06/30

SECONDARY ACCESSION(S): PRJNA172179

REPOSITORIES: GEO

Similar Datasets

2014-06-30 | E-GEOD-39969 | biostudies-arrayexpress
2021-11-05 | E-MTAB-10122 | biostudies-arrayexpress
2014-06-30 | E-MTAB-1244 | biostudies-arrayexpress
2015-02-10 | E-MTAB-2324 | biostudies-arrayexpress
2012-01-24 | E-GEOD-27478 | biostudies-arrayexpress
2012-01-24 | GSE27478 | GEO
2014-05-06 | GSE57314 | GEO
2014-05-06 | E-GEOD-57314 | biostudies-arrayexpress
2021-07-01 | GSE169525 | GEO
2021-01-07 | PXD018296 | Pride