Project description:To construct a regulatory map of the genome of the human pathogen, Mycobacterium tuberculosis, we applied two complementary high-resolution approaches: strand-specific RNA-seq, to survey the global transcriptome, and ChIP-seq, to monitor the genome-wide dynamics of RNA polymerase (RNAP) and the anti-terminator NusA. Although NusA does not bind directly to DNA, but rather to RNAP and/or to the nascent transcript, we demonstrate that NusA interacts with RNAP ubiquitously throughout the chromosome, and that its profile mirrors RNAP distribution in both the exponential and stationary phases of growth. Generally, promoter-proximal peaks for RNAP and NusA were observed, followed by a decrease in signal strength reflecting transcriptional polarity. Differential binding of RNAP and NusA in the two growth conditions correlated with transcriptional activity as reflected by RNA abundance. Indeed, a significant association between expression levels and the presence of NusA throughout the gene body was detected, confirming the peculiar transcription-promoting role of NusA. Integration of the data sets pinpointed transcriptional units, mapped promoters and uncovered new anti-sense and non-coding transcripts. Highly expressed transcriptional units were situated mainly on the leading strand, despite the relatively unbiased distribution of genes throughout the genome, thus helping the replicative and transcriptional complexes to align.
Project description:To construct a regulatory map of the genome of the human pathogen, Mycobacterium tuberculosis, we applied two complementary high-resolution approaches, strand-specific RNA-seq and ChIP-seq, to survey the global transcriptome and monitor genome-wide dynamics of RNA polymerase (RNAP) and NusA. ChIP-seq revealed that RNAP and the antiterminator, NusA, occurred ubiquitously with the NusA profile mirroring RNAP distribution in both the exponential and stationary phases of growth. Generally, promoter-proximal peaks for RNAP and NusA were observed, followed by a decrease in signal strength reflecting transcriptional polarity. Differential binding of RNAP and NusA in the two growth conditions correlated with transcriptional activity as reflected by RNA abundance. Indeed, a significant association between expression levels and the presence of NusA throughout the gene body was detected, confirming the peculiar transcription-promoting role of NusA. Integration of the datasets pinpointed transcriptional units, mapped promoters and uncovered new anti-sense and non-coding transcripts. Highly expressed transcriptional units were situated mainly on the leading strand, despite the relatively unbiased distribution of genes throughout the genome, thus helping the replicative and transcriptional complexes to align.
Project description:To construct a regulatory map of the genome of the human pathogen, Mycobacterium tuberculosis, we applied two complementary high-resolution approaches, strand-specific RNA-seq and ChIP-seq, to survey the global transcriptome and monitor genome-wide dynamics of RNA polymerase (RNAP) and NusA. ChIP-seq revealed that RNAP and the antiterminator, NusA, occurred ubiquitously with the NusA profile mirroring RNAP distribution in both the exponential and stationary phases of growth. Generally, promoter-proximal peaks for RNAP and NusA were observed, followed by a decrease in signal strength reflecting transcriptional polarity. Differential binding of RNAP and NusA in the two growth conditions correlated with transcriptional activity as reflected by RNA abundance. Indeed, a significant association between expression levels and the presence of NusA throughout the gene body was detected, confirming the peculiar transcription-promoting role of NusA. Integration of the datasets pinpointed transcriptional units, mapped promoters and uncovered new anti-sense and non-coding transcripts. Highly expressed transcriptional units were situated mainly on the leading strand, despite the relatively unbiased distribution of genes throughout the genome, thus helping the replicative and transcriptional complexes to align.
Project description:To construct a regulatory map of the genome of the human pathogen, Mycobacterium tuberculosis, we applied two complementary high-resolution approaches, strand-specific RNA-seq and ChIP-seq, to survey the global transcriptome and monitor genome-wide dynamics of RNA polymerase (RNAP) and NusA. ChIP-seq revealed that RNAP and the antiterminator, NusA, occurred ubiquitously with the NusA profile mirroring RNAP distribution in both the exponential and stationary phases of growth. Generally, promoter-proximal peaks for RNAP and NusA were observed, followed by a decrease in signal strength reflecting transcriptional polarity. Differential binding of RNAP and NusA in the two growth conditions correlated with transcriptional activity as reflected by RNA abundance. Indeed, a significant association between expression levels and the presence of NusA throughout the gene body was detected, confirming the peculiar transcription-promoting role of NusA. Integration of the datasets pinpointed transcriptional units, mapped promoters and uncovered new anti-sense and non-coding transcripts. Highly expressed transcriptional units were situated mainly on the leading strand, despite the relatively unbiased distribution of genes throughout the genome, thus helping the replicative and transcriptional complexes to align. RNA-Seq in exponential and stationary phase cultures
Project description:To construct a regulatory map of the genome of the human pathogen, Mycobacterium tuberculosis, we applied two complementary high-resolution approaches, strand-specific RNA-seq and ChIP-seq, to survey the global transcriptome and monitor genome-wide dynamics of RNA polymerase (RNAP) and NusA. ChIP-seq revealed that RNAP and the antiterminator, NusA, occurred ubiquitously with the NusA profile mirroring RNAP distribution in both the exponential and stationary phases of growth. Generally, promoter-proximal peaks for RNAP and NusA were observed, followed by a decrease in signal strength reflecting transcriptional polarity. Differential binding of RNAP and NusA in the two growth conditions correlated with transcriptional activity as reflected by RNA abundance. Indeed, a significant association between expression levels and the presence of NusA throughout the gene body was detected, confirming the peculiar transcription-promoting role of NusA. Integration of the datasets pinpointed transcriptional units, mapped promoters and uncovered new anti-sense and non-coding transcripts. Highly expressed transcriptional units were situated mainly on the leading strand, despite the relatively unbiased distribution of genes throughout the genome, thus helping the replicative and transcriptional complexes to align. ChIP-Seq of RNAP and NusA in Mtb H37Rv at exponential and stationary phase cultures. Each experiment was performed in duplicate. Input DNA (No IP) was used as a control.
Project description:Transcription elongation is a highly processive process that is punctuated by RNA polymerase (RNAP) pausing. Long-lived pauses can provide time for diverse regulatory events to occur, which play important roles in modulating gene expression. Transcription elongation factors can dramatically affect RNAP pausing in vitro. The genome-wide role of such factors in pausing in vivo has been examined only for NusG in Bacillus subtilis. NusA is another transcription elongation factor known to stimulate pausing of B. subtilis and Escherichia coli RNAP in vitro. Here, we present the first in vivo study to identify the genome-wide role of NusA in RNAP pausing. Using native elongation transcript sequencing followed by RNase digestion (RNET-seq), we analyzed factor-dependent RNAP pausing in B. subtilis and found that NusA has a relatively minor role in RNAP pausing compared to NusG. We demonstrate that NusA has both stimulating and suppressing effects on pausing in vivo. Based on our thresholding criteria on in vivo data, NusA stimulates pausing at 129 pause peaks in 93 different genes or 5' untranslated regions (5' UTRs). Putative pause hairpins were identified for 87 (67%) of the 129 NusA-stimulated pause peaks, suggesting that RNA hairpins are a common component of NusA-stimulated pause signals. However, a consensus sequence was not identified as a NusA-stimulated pause motif. We further demonstrate that NusA stimulates pausing in vitro at some of the pause sites identified in vivo. IMPORTANCE NusA is an essential transcription elongation factor that was assumed to play a major role in RNAP pausing. NusA stimulates pausing in vitro; however, the essential nature of NusA had prevented an assessment of its role in pausing in vivo. Using a NusA depletion strain and RNET-seq, we identified a similar number of NusA-stimulated and NusA-suppressed pause peaks throughout the genome. NusA-stimulated pausing was confirmed at several sites in vitro. However, NusA did not always stimulate pausing at sites identified in vivo, while in other instances NusA stimulated pausing at sites not observed in vivo. We found that NusA has only a minor role in stimulating RNAP pausing in B. subtilis.
Project description:NusA is a key regulator of bacterial transcriptional elongation, pausing, termination and antitermination, yet relatively little is known about the molecular basis of its activity in these fundamental processes. In Mycobacterium tuberculosis, NusA has been shown to bind with high affinity and specificity to BoxB-BoxA-BoxC antitermination sequences within the leader region of the single ribosomal RNA (rRNA) operon. We have determined high-resolution X-ray structures of a complex of NusA with two short oligo-ribonucleotides derived from the BoxC stem-loop motif and have characterised the interaction of NusA with a variety of RNAs derived from the antitermination region. These structures reveal the RNA bound in an extended conformation to a large interacting surface on both KH domains. Combining structural data with observed spectral and calorimetric changes, we now show that NusA binding destabilises secondary structure within rRNA antitermination sequences and propose a model where NusA functions as a chaperone for nascently forming RNA structures.
Project description:We investigated the genome-wide DNA methylation and transcriptome changes in M. tuberculosis with rifampicin or isoniazid resistance. Single-molecule real-time (SMRT) sequencing and microarray technology were performed to expound DNA methylation profiles and differentially expressed genes in rifampicin or isoniazid resistant M. tuberculosis. Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analysis and methylated regulatory network analysis were conducted by online forecasting databases. Integrated analysis of DNA methylation and transcriptome revealed that 335 differentially methylated genes (175 hypermethylated and 160 hypomethylated) and 132 significant differentially expressed genes (68 up-regulated and 63 down-regulated) were found to be regulated by both rifampicin and isoniazid in M. tuberculosis H37Rv. Correlation analysis showed that differential methylated genes were negatively correlated with their transcriptional levels in rifampicin or isoniazid resistant strains. KEGG pathway analysis indicated that nitrogen metabolism pathway is closely related to differentially methylated genes induced by rifampicin and isoniazid. KEGG also suggested that differentially expressed genes in rifampicin or isoniazid-resistant strains may play different roles in regulating signal transduction events. Furthermore, five differentially methylated candidate genes (Rv0840c, Rv2243, Rv0644c, Rv2386c and Rv1130) in rifampicin resistant strains and three genes (Rv0405, Rv0252 and Rv0908) in isoniazid-resistant strains were verified the existence of protein-protein interaction in STRING database. Integrated DNA methylation and transcriptome analyses provide an epigenetic overview of rifampicin and isoniazid-induced antibiotic resistance in M. tuberculosis H37Rv. Several interesting genes and regulatory pathways may provide valuable resources for epigenetic studies in M. tuberculosis antibiotic resistance.
Project description:Streptomycin-resistant (SM-resistant) Mycobacterium tuberculosis (M. tuberculosis) is a major concern in tuberculosis (TB) treatment. However, the mechanisms underlying streptomycin resistance remain unclear. This study primarily aimed to perform preliminary screening of genes associated with streptomycin resistance through conjoint analysis of multiple genomics. Genome-wide methylation, transcriptome, and proteome analyses were used to elucidate the associations between specific genes and streptomycin resistance in M. tuberculosis H37Rv. Methylation analysis revealed that 188 genes were differentially methylated between the SM-resistant and normal groups, with 89 and 99 genes being hypermethylated and hypomethylated, respectively. Furthermore, functional analysis revealed that these 188 differentially methylated genes were enriched in 74 pathways, with most of them being enriched in metabolic pathways. Transcriptome analysis revealed that 516 genes were differentially expressed between the drug-resistant and normal groups, with 263 and 253 genes being significantly upregulated and downregulated, respectively. KEGG analysis indicated that these 516 genes were enriched in 79 pathways, with most of them being enriched in histidine metabolism. The methylation level was negatively related to mRNA abundance. Proteome analysis revealed 56 differentially expressed proteins, including 14 upregulated and 42 downregulated proteins. Moreover, three hub genes (coaE, fadE5, and mprA) were obtained using synthetic analysis. The findings of this study suggest that an integrated DNA methylation, transcriptome, and proteome analysis can provide important resources for epigenetic studies in SM-resistant M. tuberculosis H37Rv.