Genomics

Dataset Information

0

Understanding transcriptional changes associated with the transition to selfing in Arabidopsis thaliana


ABSTRACT: RNA-seq reads from the selfing species Arabidopsis thaliana were produced from flowers to study the consequences of the transition from the ancestral state (outcrossing) to the derived state (selfing). This was done in the context of examining another species in the Arabidopsis genus (A. lyrata) and another species pair (Capsella rubella versus Capsella grandiflora, which are selfing and outcrossing, respectively). These samples were generated to complement part of this larger study. Briefly, the shift from outcrossing to selfing is common in flowering plants, but neither the genomic consequences nor the speed with which they appear are well understood. An excellent model for understanding the evolution of self fertilization is provided by Capsella rubella, which became self-compatible <200,000 years ago. We present a reference genome for the species, and compare RNA expression and polymorphism patterns between C. rubella and its outcrossing progenitor C. grandiflora. There is a clear shift in the expression of genes associated with flowering phenotypes; a similar shift is seen in the related genus Arabidopsis, where self-fertilization evolved about 1 million years ago. DNA sequence polymorphisms distinguishing the two Capsella species reveal rapid genome-wide relaxation of purifying selection in C. rubella but without a concomitant change in transposable element abundance. Overall, we document that the transition to selfing may be typified by shifts in expression for genes that function in pollen and flower development, along with a measurable reduction of purifying selection.

ORGANISM(S): Arabidopsis thaliana

PROVIDER: GSE45685 | GEO | 2013/04/02

SECONDARY ACCESSION(S): PRJNA195608

REPOSITORIES: GEO

Similar Datasets

2013-04-02 | E-GEOD-45685 | biostudies-arrayexpress
2013-04-02 | E-GEOD-45676 | biostudies-arrayexpress
2013-04-02 | GSE45676 | GEO
2013-03-28 | E-GEOD-45518 | biostudies-arrayexpress
2013-03-28 | GSE45518 | GEO
2021-05-12 | GSE174273 | GEO
2015-03-28 | GSE67359 | GEO
| PRJNA194469 | ENA
2020-03-31 | GSE140465 | GEO
2019-03-26 | GSE103209 | GEO