Project description:In this paper several computer programs were used to simulate in situ synthesis of peptides using shadow masks and BOC synthesis. The peptides were designed to be random, or pseudo-random, but fulfill requirements of immunosignaturing. This file contains data from actual 330,000 peptide arrays that used the first iteration of the peptide generation algorithm. Monoclonal antibodies were bound to the microarrays and the total number of peptides that distinguished each monoclonal was measured. This provides a baseline against which to compare purely random sequences.
Project description:An experiment was designed to use a computer program to create lithography masks using a pseudo-random pattern generator. The data in this file are results from immunosignaturing 8 different monoclonals using a 10,000 peptide random-sequence microarray. Peptides were synthesized by Sigma Aldrich, and printed onto glass slides and used to test several different parameters.
Project description:A computer program was used to create random amino acid sequences based on and restricted by physical shadow masks which will be used for lithography-based synthesis of peptides. The output from this algorithm was used to create peptides that were synthesized by Sigma Aldrich, and printed onto glass slides. The arrays contained 384 peptides printed in duplicate for each of 4 different mask designs. 52 different monoclonal antibodies were incubated on these microarrays and analyzed for their propensity to bind the peptides created from each mask set. The diversity of binding served as a proxy for the 'randomness' of these peptides, and provided information about how many masks are needed to truly generate random sequence peptides.
Project description:A computer program was used to create random amino acid sequences based on and restricted by physical shadow masks which will be used for lithography-based synthesis of peptides. The output from this algorithm was used to create peptides that were synthesized by Sigma Aldrich, and printed onto glass slides. The arrays contained 384 peptides printed in duplicate for each of 4 different mask designs. 52 different monoclonal antibodies were incubated on these microarrays and analyzed for their propensity to bind the peptides created from each mask set. The diversity of binding served as a proxy for the 'randomness' of these peptides, and provided information about how many masks are needed to truly generate random sequence peptides. two replicates of each peptide was printed on 1 Mask peptide microarray. A minimum of Two microarrays were tested for each sample. Image was qualified using in-house metrics for quality assurance.
Project description:In this paper several computer programs were used to simulate in situ synthesis of peptides using shadow masks and BOC synthesis. The peptides were designed to be random, or pseudo-random, but fulfill requirements of immunosignaturing. This file contains data from actual 330,000 peptide arrays that used the first iteration of the peptide generation algorithm. Monoclonal antibodies were bound to the microarrays and the total number of peptides that distinguished each monoclonal was measured. This provides a baseline against which to compare purely random sequences. One replicate of each peptide was printed on 1 330k peptide microarray. One microarray were tested for each sample. Image was qualified using in-house metrics for quality assurance.
Project description:An experiment was designed to use a computer program to create lithography masks using a pseudo-random pattern generator. The data in this file are results from immunosignaturing 8 different monoclonals using a 10,000 peptide random-sequence microarray. Peptides were synthesized by Sigma Aldrich, and printed onto glass slides and used to test several different parameters. One replicate of each peptide was printed on 1 CIM_10K_v2 peptide microarray. One microarray were tested for each sample. Image was qualified using in-house metrics for quality assurance.
Project description:Nucleic acid photolithography is the only microarray fabrication process that has demonstrated chemical versatility accommodating any type of nucleic acid. The current approach to RNA microarray synthesis requires long coupling and photolysis times and suffers from unavoidable degradation postsynthesis. In this study, we developed a series of RNA phosphoramidites with improved chemical and photochemical protection of the 2'- and 5'-OH functions. In so doing, we reduced the coupling time by more than half and the photolysis time by a factor of 4. Sequence libraries that would otherwise take over 6 hours to synthesize can now be prepared in half the time. Degradation is substantially lowered, and concomitantly, hybridization signals can reach over seven times those of the previous state of the art. Under those conditions, high-density RNA microarrays and RNA libraries can now be synthesized at greatly accelerated rates. We also synthesized fluorogenic RNA Mango aptamers on microarrays and investigated the effect of sequence mutations on their fluorogenic properties.
Project description:To pattern electrical metal contacts, electron beam lithography or photolithography are commonly utilized, and these processes require polymer resists with solvents. During the patterning process the graphene surface is exposed to chemicals, and the residue on the graphene surface was unable to be completely removed by any method, causing the graphene layer to be contaminated. A lithography free method can overcome these residue problems. In this study, we use a micro-grid as a shadow mask to fabricate a graphene based field-effect-transistor (FET). Electrical measurements of the graphene based FET samples are carried out in air and vacuum. It is found that the Dirac peaks of the graphene devices on SiO2 or on hexagonal boron nitride (hBN) shift from a positive gate voltage region to a negative region as air pressure decreases. In particular, the Dirac peaks shift very rapidly when the pressure decreases from ~2 × 10(-3) Torr to ~5 × 10(-5) Torr within 5 minutes. These Dirac peak shifts are known as adsorption and desorption of environmental gases, but the shift amounts are considerably different depending on the fabrication process. The high gas sensitivity of the device fabricated by shadow mask is attributed to adsorption on the clean graphene surface.