Genomics

Dataset Information

0

Consistent and Heritable Alterations of DNA Methylation are Induced by Tissue Culture in Maize


ABSTRACT: Plants regenerated from tissue culture and their progenies are expected to be identical clones, but often display heritable molecular and phenotypic variation. We characterized DNA methylation patterns in callus, primary regenerants, and regenerant-derived progenies using immunoprecipitation of methylated DNA (meDIP) to assess the genome-wide frequency, pattern, and heritability of DNA methylation changes. Although genome-wide DNA methylation levels remained similar following tissue culture, numerous regions exhibited altered DNA methylation levels. Hypomethylation events were observed more frequently than hypermethylation following tissue culture. Many of the hypomethylation events occur at the same genomic site across independent regenerants and cell lines. The DNA methylation changes were often heritable in progenies produced from self-pollination of primary regenerants. Methylation changes were enriched in regions upstream of genes and loss of DNA methylation at promoters was associated with altered expression at a subset of loci. Differentially methylated regions (DMRs) found in tissue culture regenerants overlap with the position of naturally occurring DMRs more often than expected by chance with 8% of tissue culture hypomethylated DMRs overlapping with DMRs identified by profiling natural variation, consistent with the hypotheses that genomic stresses similar to those causing somaclonal variation may also occur in nature, and that certain loci are particularly susceptible to epigenetic change in response to these stresses. The consistency of methylation changes across regenerants from independent cultures suggests a mechanistic response to the culture environment as opposed to an overall loss of fidelity in the maintenance of epigenetic states.

ORGANISM(S): Zea mays

PROVIDER: GSE56479 | GEO | 2015/03/24

SECONDARY ACCESSION(S): PRJNA244103

REPOSITORIES: GEO

Similar Datasets

2013-08-12 | E-GEOD-46949 | biostudies-arrayexpress
2013-08-12 | GSE46949 | GEO
2012-08-27 | GSE38503 | GEO
2024-01-08 | PXD045653 | Pride
2012-12-01 | E-MTAB-1150 | biostudies-arrayexpress
2014-04-01 | E-GEOD-51567 | biostudies-arrayexpress
2022-12-31 | GSE206313 | GEO
2012-08-27 | E-GEOD-38503 | biostudies-arrayexpress
2019-02-05 | GSE120981 | GEO
2014-04-01 | GSE51567 | GEO