Genomics

Dataset Information

0

Epigenomic comparison of distinct pluripotent stem cell states reveals a new class of enhancers with roles throughout mammalian development (DNase-seq)


ABSTRACT: Naïve mouse embryonic stem cells (mESCs) and primed epiblast stem cells (mEpiSCs) represent successive snapshots of pluripotency during embryogenesis. Using transcriptomic and epigenomic mapping, we show that a small fraction of transcripts are differentially expressed between mESCs and mEpiSCs and these genes show expected changes in chromatin at their promoters and enhancers. Unexpectedly, the cis-regulatory circuitry of genes that are expressed at identical levels between these cell states also differs dramatically. In mESCs, these genes are associated with dominant proximal enhancers and dormant distal enhancers, which we term seed enhancers. In mEpiSCs, the naïve-dominant enhancers are lost, and the seed enhancers take up primary transcriptional control. Seed enhancers have increased sequence conservation and show preferential usage in downstream somatic tissues, often expanding into super enhancers. We propose that seed enhancers ensure proper enhancer utilization and transcriptional fidelity as mammalian cells transition from naïve pluripotency to a somatic regulatory program.

ORGANISM(S): Mus musculus

PROVIDER: GSE57406 | GEO | 2014/06/04

SECONDARY ACCESSION(S): PRJNA246399

REPOSITORIES: GEO

Similar Datasets

2014-06-04 | GSE57407 | GEO
2014-06-04 | GSE57403 | GEO
2014-06-04 | E-GEOD-57406 | biostudies-arrayexpress
2014-06-04 | E-GEOD-57407 | biostudies-arrayexpress
2014-06-04 | E-GEOD-57403 | biostudies-arrayexpress
2015-06-08 | E-GEOD-57271 | biostudies-arrayexpress
2015-06-08 | GSE57271 | GEO
2019-07-11 | GSE84679 | GEO
2021-07-21 | GSE157087 | GEO
2021-07-21 | GSE175610 | GEO