Metabolic Inflexibility Impairs Insulin Secretion And Results In MODY-like Diabetes In Triple FoxO-deficient Mice
Ontology highlight
ABSTRACT: Pancreatic b-cell failure in type 2 diabetes is associated with functional abnormalities of insulin secretion and deficits of b-cell mass. It’s unclear how one begets the other. We have shown that loss of b-cell mass can be ascribed to impaired FoxO1 function in different models of diabetes. Here we show that ablation of the three FoxO genes (1, 3a, and 4) in mature b-cells results in early-onset, maturity onset diabetes of the young (MODY)-like diabetes, with signature abnormalities of the MODY networks of Hnf4a, Hnf1a, and Pdx1. Transcriptome and functional analyses reveal that FoxO-deficient b-cells are metabolically inflexible, i.e., they preferentially utilize lipids rather than carbohydrates as source of acetyl-CoA for mitochondrial oxidative phosphorylation. This results in impaired ATP generation, and reduced Ca2+-dependent insulin secretion. When viewed in the context of prior data illustrating a role of FoxO1 in b-cell dedifferentiation, the present findings define a seamless FoxO-dependent mechanism linking the twin abnormalities of b-cell function in diabetes. We used microarrays to detail the change of gene expression in pancreatic beta cells after knocking out FoxO1,3 and 4.
ORGANISM(S): Mus musculus
PROVIDER: GSE60505 | GEO | 2014/08/20
SECONDARY ACCESSION(S): PRJNA258439
REPOSITORIES: GEO
ACCESS DATA