Project description:Unrestrained receptor tyrosine kinase (RTK) signaling and epigenetic deregulation are root causes of tumorigenesis. We establish linkage between these processes by demonstrating that aberrant RTK signaling unleashed by oncogenic HRas(G12V) or loss of negative feedback through Sprouty gene deletion remodels histone modifications associated with active typical and super-enhancers. However, although both lesions disrupt the Ras-Erk axis, the expression programs, enhancer signatures, and transcription factor networks modulated upon HRas(G12V) transformation or Sprouty deletion are largely distinct. Oncogenic HRas(G12V) elevates histone 3 lysine 27 acetylation (H3K27ac) levels at enhancers near the transcription factor Gata4 and the kinase Prkcb, as well as their expression levels. We show that Gata4 is necessary for the aberrant gene expression and H3K27ac marking at enhancers, and Prkcb is required for the oncogenic effects of HRas(G12V)-driven cells. Taken together, our findings demonstrate that dynamic reprogramming of the cellular enhancer landscape is a major effect of oncogenic RTK signaling.
Project description:Unrestrained receptor tyrosine kinase (RTK) signaling and epigenetic deregulation are root causes of tumorigenesis. We establish linkage between these processes by demonstrating that aberrant RTK signaling unleashed by oncogenic HRasG12V or loss of negative feedback through Sprouty gene deletion remodels histone modifications associated with active typical and super-enhancers. However, while both lesions disrupt the Ras-Erk axis, the expression programs, enhancer signatures, and transcription factor networks modulated upon HRasG12V-transformation or Sprouty deletion are largely distinct. Oncogenic HRasG12V elevates histone 3 lysine 27 acetylation (H3K27ac) levels at enhancers near the transcription factor Gata4 and the kinase Prkcb, as well as their expression levels. We show that Gata4 is necessary for the aberrant gene expression and H3K27ac marking at enhancers, and Prkcb is required for the oncogenic effects of HRasG12V-driven cells. Taken together, our findings demonstrate that dynamic reprogramming of the cellular enhancer landscape is a major effect of oncogenic RTK signaling. We assessed gene expression changes upon loss of feedback regulation through Sprouty (Spry) deletion, and upon unrestrained signaling driven by mutant oncogenes. RNA-seq was performed in biological triplicate; replicate number is included in the sample name. Spry124fl/fl (VEC) and Spry124-/- (CRE) MEFs were profiled in three conditions: unsynchronized (U), serum starved (S), and serum starved and FGF treated (F). Spry124fl/fl (VEC) MEFs transduced with empty vector (EV) control or the indicated oncogenes (KRasG12V, HRasG12V, and BRafV600E) as well as Spry124-/- (CRE) MEFs transduced with EV control were profiled in the unsynchronized state.
Project description:Unrestrained receptor tyrosine kinase (RTK) signaling and epigenetic deregulation are root causes of tumorigenesis. We establish linkage between these processes by demonstrating that aberrant RTK signaling unleashed by oncogenic HRasG12V or loss of negative feedback through Sprouty gene deletion remodels histone modifications associated with active typical and super-enhancers. However, while both lesions disrupt the Ras-Erk axis, the expression programs, enhancer signatures, and transcription factor networks modulated upon HRasG12V-transformation or Sprouty deletion are largely distinct. Oncogenic HRasG12V elevates histone 3 lysine 27 acetylation (H3K27ac) levels at enhancers near the transcription factor Gata4 and the kinase Prkcb, as well as their expression levels. We show that Gata4 is necessary for the aberrant gene expression and H3K27ac marking at enhancers, and Prkcb is required for the oncogenic effects of HRasG12V-driven cells. Taken together, our findings demonstrate that dynamic reprogramming of the cellular enhancer landscape is a major effect of oncogenic RTK signaling. We performed ChIP-seq to assess the global changes in the histone modifications H3K27ac (AC), H3K4me1 (me1), and H3K4me3 (me3) upon loss of feedback regulation through Sprouty (Spry) deletion, and upon unrestrained signaling driven by oncogenic HRasG12V. ChIP-seq was performed in biological duplicate; replicate2 is indicated in the sample name. Spry124fl/fl (VEC) and Spry124-/- (CRE) MEFs were profiled in three conditions: unsynchronized (U), serum starved (S), and serum starved and FGF treated (F). Spry124fl/fl (VEC) MEFs transduced with empty vector (EV) control or HRasG12V (HRas) were profiled in the unsynchronized state.
Project description:Unrestrained receptor tyrosine kinase (RTK) signaling and epigenetic deregulation are root causes of tumorigenesis. We establish linkage between these processes by demonstrating that aberrant RTK signaling unleashed by oncogenic HRasG12V or loss of negative feedback through Sprouty gene deletion remodels histone modifications associated with active typical and super-enhancers. However, while both lesions disrupt the Ras-Erk axis, the expression programs, enhancer signatures, and transcription factor networks modulated upon HRasG12V-transformation or Sprouty deletion are largely distinct. Oncogenic HRasG12V elevates histone 3 lysine 27 acetylation (H3K27ac) levels at enhancers near the transcription factor Gata4 and the kinase Prkcb, as well as their expression levels. We show that Gata4 is necessary for the aberrant gene expression and H3K27ac marking at enhancers, and Prkcb is required for the oncogenic effects of HRasG12V-driven cells. Taken together, our findings demonstrate that dynamic reprogramming of the cellular enhancer landscape is a major effect of oncogenic RTK signaling.
Project description:Unrestrained receptor tyrosine kinase (RTK) signaling and epigenetic deregulation are root causes of tumorigenesis. We establish linkage between these processes by demonstrating that aberrant RTK signaling unleashed by oncogenic HRasG12V or loss of negative feedback through Sprouty gene deletion remodels histone modifications associated with active typical and super-enhancers. However, while both lesions disrupt the Ras-Erk axis, the expression programs, enhancer signatures, and transcription factor networks modulated upon HRasG12V-transformation or Sprouty deletion are largely distinct. Oncogenic HRasG12V elevates histone 3 lysine 27 acetylation (H3K27ac) levels at enhancers near the transcription factor Gata4 and the kinase Prkcb, as well as their expression levels. We show that Gata4 is necessary for the aberrant gene expression and H3K27ac marking at enhancers, and Prkcb is required for the oncogenic effects of HRasG12V-driven cells. Taken together, our findings demonstrate that dynamic reprogramming of the cellular enhancer landscape is a major effect of oncogenic RTK signaling.
Project description:In briefThe appropriate growth and functions of Sertoli cells are crucial to testis development and spermatogenesis in mammals. This study reveals a novel mechanism of follicle-stimulating hormone in immature porcine Sertoli cell proliferation.AbstractFollicle-stimulating hormone (FSH) is a major Sertoli cell mitogen that binds to the FSH receptor. Sertoli cells are indispensable for testis development and spermatogenesis. However, the regulatory mechanisms of FSH in immature Sertoli cell proliferation have not been determined, particularly in domestic animals. In the present study, we identified the regulatory mechanisms of FSH during immature porcine Sertoli cell proliferation. Transcriptome analysis revealed 114 differentially expressed genes that were induced by FSH treatment, which contains 68 upregulated and 46 downregulated genes. These differentially expressed genes were enriched in multiple pathways, including the Ras signaling pathway. Knockdown of the CC-chemokine receptor 7 (CCR7) gene, which was upregulated by FSH, inhibited cell cycle progression by arresting cells in the G1 phase and reduced the cell proliferation and ERK1/2 phosphorylation. In addition, Kobe0065 inhibited Ras signaling in a similar manner as CCR7 knockdown. Furthermore, FSH abolished the effects of Ras signaling pathway inhibition and CCR7 knockdown. Collectively, FSH promotes immature porcine Sertoli cell proliferation by activating the CCR7/Ras-ERK signaling axis. Our results provide novel insights into the regulatory mechanism of FSH in porcine testis development and spermatogenesis by deciding the fate of immature porcine Sertoli cells.