Genomics

Dataset Information

0

HER2 expression identifies dynamic functional states within circulating breast cancer cells


ABSTRACT: Circulating tumour cells in women with advanced oestrogen-receptor (ER)-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer acquire a HER2-positive subpopulation after multiple courses of therapy. In contrast to HER2-amplified primary breast cancer, which is highly sensitive to HER2-targeted therapy, the clinical significance of acquired HER2 heterogeneity during the evolution of metastatic breast cancer is unknown. Here we analyse circulating tumour cells from 19 women with ER+/HER2- primary tumours, 84% of whom had acquired circulating tumour cells expressing HER2. Cultured circulating tumour cells maintain discrete HER2+ and HER2- subpopulations: HER2+ circulating tumour cells are more proliferative but not addicted to HER2, consistent with activation of multiple signalling pathways; HER2- circulating tumour cells show activation of Notch and DNA damage pathways, exhibiting resistance to cytotoxic chemotherapy, but sensitivity to Notch inhibition. HER2+ and HER2- circulating tumour cells interconvert spontaneously, with cells of one phenotype producing daughters of the opposite within four cell doublings. Although HER2+ and HER2- circulating tumour cells have comparable tumour initiating potential, differential proliferation favours the HER2+ state, while oxidative stress or cytotoxic chemotherapy enhances transition to the HER2- phenotype. Simultaneous treatment with paclitaxel and Notch inhibitors achieves sustained suppression of tumorigenesis in orthotopic circulating tumour cell-derived tumour models. Together, these results point to distinct yet interconverting phenotypes within patient-derived circulating tumour cells, contributing to progression of breast cancer and acquisition of drug resistance.

ORGANISM(S): Homo sapiens

PROVIDER: GSE75367 | GEO | 2016/08/25

SECONDARY ACCESSION(S): PRJNA304018

REPOSITORIES: GEO

Similar Datasets

2016-08-25 | E-GEOD-75367 | biostudies-arrayexpress
2019-07-10 | BIOMD0000000745 | BioModels
2024-04-24 | GSE249573 | GEO
2013-12-12 | E-GEOD-53179 | biostudies-arrayexpress
2020-06-01 | PXD010574 | Pride
2013-12-12 | GSE53179 | GEO
2013-09-24 | E-GEOD-43730 | biostudies-arrayexpress
2019-06-21 | GSE83608 | GEO
2019-12-19 | GSE142308 | GEO
2019-02-01 | E-MTAB-7433 | biostudies-arrayexpress