Transcriptomics

Dataset Information

0

TNF and CD28 signaling play unique but complementary roles in the systemic recruitment of innate immune cells after Staphylococcus aureus enterotoxin A inhalation


ABSTRACT: Staphylococcus aureus enterotoxins cause debilitating systemic inflammatory responses, but how they spread systemically and trigger cascading inflammation is unclear. Here, we showed in mice that after inhalation, Staphylococcus aureus enterotoxin A rapidly entered the bloodstream and induced T cells to orchestrate systemic recruitment of inflammatory monocytes and neutrophils. To study the mechanism used by specific T cells that mediate this process, a systems approach revealed inducible and non-inducible pathways as potential targets. It was found that TNF induced neutrophil entry into the peripheral blood, while CD28 signaling, but not TNF, was needed for chemotaxis of inflammatory monocytes into blood and lymphoid tissue. However, both pathways triggered local recruitment of neutrophils into lymph nodes. Thus, our findings revealed a dual mechanism of monocyte and neutrophil recruitment by T cells relying on overlapping and non-overlapping roles for the non-inducible costimulatory receptor CD28 and the inflammatory cytokine TNF. During sepsis, there might be clinical value in inhibiting CD28 signaling to decrease T cell-mediated inflammation and recruitment of innate cells while retaining bioactive TNF to foster neutrophil circulation.

ORGANISM(S): Mus musculus

PROVIDER: GSE76190 | GEO | 2015/12/22

SECONDARY ACCESSION(S): PRJNA306586

REPOSITORIES: GEO

Similar Datasets

2012-12-05 | E-GEOD-36826 | biostudies-arrayexpress
2012-12-05 | GSE36826 | GEO
2023-01-01 | GSE215195 | GEO
2022-07-20 | GSE193219 | GEO
2013-01-10 | GSE39889 | GEO
2021-06-02 | GSE157176 | GEO
2021-09-22 | PXD028332 | Pride
2015-09-24 | E-GEOD-70068 | biostudies-arrayexpress
2013-01-31 | E-GEOD-43890 | biostudies-arrayexpress
2013-01-31 | E-GEOD-43889 | biostudies-arrayexpress