Genomics

Dataset Information

0

Perlman syndrome nuclease DIS3L2 controls cytoplasmic non-coding RNAs and provides surveillance pathway for maturing snRNAs


ABSTRACT: The exosome-independent exoribonuclease DIS3L2 is mutated in Perlman syndrome. Here we used extensive global transcriptomic and targeted biochemical analyses to identify novel DIS3L2 substrates in human cells. We show that DIS3L2 regulates pol II transcripts, comprising selected canonical and histone-coding mRNAs, and a novel FTL_short RNA from the ferritin mRNA 5' UTR. Importantly, DIS3L2 contributes to surveillance of pre-snRNAs during their cytoplasmic maturation. Among pol III transcripts, DIS3L2 particularly targets vault and Y RNAs and an Alu-like element BC200 RNA, but not Alu repeats, which are removed by exosome-associated DIS3. Using 3' RACE-Seq, we demonstrate that all novel DIS3L2 substrates are uridylated in vivo by TUT4/TUT7 poly(U) polymerases. Uridylation-dependent DIS3L2-mediated decay can be recapitulated in vitro, thus reinforcing the tight cooperation between DIS3L2 and TUTases. Together these results indicate that catalytically inactive DIS3L2, characteristic of Perlman syndrome, can lead to deregulation of its target RNAs to disturb transcriptome homeostasis.

ORGANISM(S): Homo sapiens

PROVIDER: GSE82336 | GEO | 2016/07/19

SECONDARY ACCESSION(S): PRJNA324679

REPOSITORIES: GEO

Similar Datasets

2016-07-19 | E-GEOD-82336 | biostudies-arrayexpress
2016-07-08 | GSE84107 | GEO
2018-07-03 | GSE114673 | GEO
2016-09-27 | GSE81537 | GEO
2019-04-13 | GSE129734 | GEO
2021-07-15 | GSE175883 | GEO
2016-09-27 | GSE81534 | GEO
2016-09-27 | GSE81536 | GEO
2021-07-15 | GSE160104 | GEO
2020-01-01 | GSE133759 | GEO