Genomics

Dataset Information

0

Sociality and DNA methylation are not evolutionary dependent


ABSTRACT: DNA methylation is an important chromatin modification that is necessary for the structural integrity and proper regulation of the genome for many species. Despite its conservation across the tree of life, little is known about its contribution to complex traits. Reports that differences in DNA methylation between castes in closely related Hymenopteran insects (ants, bees and wasps) contributes to social behaviors has generated hypotheses on the role of DNA methylation in governing social behavior. However, social behavior has evolved multiple times across insecta, and a common role of DNA methylation in social behavior remains outstanding. Using phylogenetic comparative methods we sought to better understand patterns of DNA methylation and social behavior across insects. DNA methylation can be found in social and solitary insects from all orders, except Diptera (flies), which suggests a shared loss of DNA methylation within this order. The lack of DNA methylation is reflected in the absence of the maintenance and de novo DNA methyltransferases (DNMT) 1 and 3, respectively. Interestingly, DNA methylation is found in species without DNMT3. DNA methylation and social behavior (social/solitary) or with division of labor (caste+/caste–) for 123 insect species analyzed from 11 orders are not evolutionary dependent, which is further supported by sequencing of DNA methylomes from 40 species.

ORGANISM(S): Blattella germanica Blattella asahinai Heliothis virescens Blaptica dubia Reticulitermes flavipes Aedes atropalpus Acyrthosiphon pisum Cryptocercus garciai Anastrepha suspensa Pemphigus populicaulis Pemphigus populitransversus Pemphigus obesinymphae Polistes carolina Eublaberus posticus Helicoverpa zea Microplitis demolitor Aedes albopictus Microplitis mediator Aphidius ervi Culex quinquefasciatus Reticulitermes virginicus Chrysodeixis includens Aphis craccivora Rhyparobia maderae Anopheles gambiae Periplaneta americana Aedes aegypti Toxorhynchites amboinensis Pyractomena borealis Copidosoma floridanum

PROVIDER: GSE83497 | GEO | 2017/02/02

SECONDARY ACCESSION(S): PRJNA326247

REPOSITORIES: GEO

Similar Datasets

2020-12-13 | GSE137000 | GEO
2020-01-04 | GSE143056 | GEO
2020-06-22 | GSE146351 | GEO
2023-03-11 | PXD026565 | Pride
2014-06-01 | E-MTAB-2621 | biostudies-arrayexpress
2018-06-18 | PXD008745 | Pride
2016-07-27 | E-GEOD-71988 | biostudies-arrayexpress
2021-01-31 | GSE159973 | GEO
2016-07-27 | GSE71988 | GEO
2016-05-24 | GSE74301 | GEO