Effect of microplastic particles on gene expression in Daphnia magna
Ontology highlight
ABSTRACT: Transcriptional profiling of the waterflea Daphnia magna, when exposed to microplastic particles made of polyvinylchloride (PVC) and the incorporated plasticizer diisononyl phtalate (DINP)
Project description:In the past years, the research focus on the effects of microplastics (MP) on aquatic organisms extended from marine systems towards freshwater systems. An important freshwater model organism in the MP field is the cladoceran Daphnia, which plays a central role in lacustrine ecosystems and has been established as a test organism in ecotoxicology. To investigate the effects of MP on Daphnia magna, we performed a chronic exposure experiment with polystyrene MP under strictly standardized conditions. Chronic exposure of D. magna to PS microparticles led to a significant reduction in body length and number of offspring. To shed light on underlying molecular mechanisms induced by microplastic ingestion in D. magna, we assessed the effects of PS-MP at the proteomic level.
Project description:This SuperSeries is composed of the following subset Series: GSE29854: Daphnia magna exposed to narcotics and polar narcotics - aniline GSE29856: Daphnia magna exposed to narcotics and polar narcotics - 4-chloroaniline GSE29857: Daphnia magna exposed to narcotics and polar narcotics - 3,5-dichloroaniline GSE29858: Daphnia magna exposed to narcotics and polar narcotics - 2,3,4-trichloroaniline GSE29862: Daphnia magna exposed to narcotics and polar narcotics - ethanol GSE29864: Daphnia magna exposed to narcotics and polar narcotics - isopropanol GSE29867: Daphnia magna exposed to narcotics and polar narcotics - methanol Refer to individual Series
Project description:There is global concern regarding the fate and effects of microplastics in the environment, particularly in aquatic systems. In this study, ethylene acrylic acid copolymer particles were evaluated in a chronic toxicity study with the aquatic invertebrate, Daphnia magna. The study design included a natural particle control treatment (i.e., silica) in order to discern any potential physical effects of a particlefrom intrinsic toxicity of the test material. In addition to the standard endpoints of survival, growth, and reproduction, the transcriptomic profile of control and ethylene acrylic acid copolymer-exposed D. magna were evaluated at the termination of the 21-day toxicity study. No significant effects on D. magna growth, survival, or reproduction were observed in the study in comparison to both particle and untreated control groups. Significant transcriptomic alterations were induced in the highest treatment level of 2.3 x 1012 particles of the ethylene acrylic acid copolymer/ L in key pathways linked to central metabolism and energy reserves, oxidative stress, as well as ovulation and molting indicating a global transcriptomic response pattern. To put the results in perspective is challenging at this time, since, to date, microplastic environmental monitoring approaches have not been equipped to detect particles in the nano size range. However, the results of this study indicate that ethylene acrylic acid copolymer microplastics in the upper nano-size range are not expected to adversely affect D. magna growth, survival, or reproductive outcomes at concentrations up to 1012 particles/L.
Project description:Comparison of female and male Daphnia magna gene expression with age. The sexes in Daphnia magna are genetically identical. The aim of this study was to identify possible differences in gene expression between genders with age.