Project description:The identification of deregulated microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in multiple myeloma (MM) has progressively added a further level of complexity to MM biology. In addition, the cross-regulation between lncRNAs and miRNAs has begun to emerge, and theoretical and experimental studies have demonstrated the competing endogenous RNA (ceRNA) activity of lncRNAs as natural miRNA decoys in pathophysiological conditions, including cancer. Currently, information concerning lncRNA and miRNA interplay in MM is virtually absent. Herein, we investigated in silico the lncRNA and miRNA relationship in a representative datasets encompassing 95 MM and 30 plasma cell leukemia patients at diagnosis and in four normal controls, whose expression profiles were generated by a custom annotation pipeline to detect specific lncRNAs. We applied target prediction analysis based on miRanda and RNA22 algorithms to 235 lncRNAs and 459 miRNAs selected with a potential pivotal role in the pathology of MM. Among pairs that showed a significant correlation between lncRNA and miRNA expression levels, we identified 11 lncRNA-miRNA relationships suggestive of a novel ceRNA network with relevance in MM.
Project description:The identification of deregulated microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in multiple myeloma (MM) has progressively added a further level of complexity to MM biology. In addition, the cross-regulation between lncRNAs and miRNAs has begun to emerge, and theoretical and experimental studies have demonstrated the competing endogenous RNAs (ceRNAs) activity of lncRNAs as natural miRNA decoys in pathophysiological conditions, including cancer. Currently, information concerning lncRNA and miRNA interplay in MM is virtually absent. Herein, we investigated in silico the lncRNA and miRNA relationship in a representative datasets encompassing 95 MM and 30 plasma cell leukemia patients at diagnosis and in four normal controls, whose expression profiles were generated by a custom annotation pipeline to detect specific lncRNAs. We applied target prediction analysis based on miRanda and RNA22 algorithms to 235 lncRNAs and 459 miRNAs selected with a potential pivotal role in the pathology of MM. Among pairs that showed significant correlation between lncRNA and miRNA expression levels, we identified 10 lncRNA-miRNA relationships suggestive of novel ceRNA network with relevance in MM.
Project description:The identification of deregulated microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in multiple myeloma (MM) has progressively added a further level of complexity to MM biology. In addition, the cross-regulation between lncRNAs and miRNAs has begun to emerge, and theoretical and experimental studies have demonstrated the competing endogenous RNAs (ceRNAs) activity of lncRNAs as natural miRNA decoys in pathophysiological conditions, including cancer. Currently, information concerning lncRNA and miRNA interplay in MM is virtually absent. Herein, we investigated in silico the lncRNA and miRNA relationship in a representative datasets encompassing 95 MM and 30 plasma cell leukemia patients at diagnosis and in four normal controls, whose expression profiles were generated by a custom annotation pipeline to detect specific lncRNAs. We applied target prediction analysis based on miRanda and RNA22 algorithms to 235 lncRNAs and 459 miRNAs selected with a potential pivotal role in the pathology of MM. Among pairs that showed significant correlation between lncRNA and miRNA expression levels, we identified 10 lncRNA-miRNA relationships suggestive of novel ceRNA network with relevance in MM.
Project description:The identification of deregulated microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in multiple myeloma (MM) has progressively added a further level of complexity to MM biology. In addition, the cross-regulation between lncRNAs and miRNAs has begun to emerge, and theoretical and experimental studies have demonstrated the competing endogenous RNAs (ceRNAs) activity of lncRNAs as natural miRNA decoys in pathophysiological conditions, including cancer. Currently, information concerning lncRNA and miRNA interplay in MM is virtually absent. Herein, we investigated in silico the lncRNA and miRNA relationship in a representative datasets encompassing 95 MM and 30 plasma cell leukemia patients at diagnosis and in four normal controls, whose expression profiles were generated by a custom annotation pipeline to detect specific lncRNAs. We applied target prediction analysis based on miRanda and RNA22 algorithms to 235 lncRNAs and 459 miRNAs selected with a potential pivotal role in the pathology of MM. Among pairs that showed significant correlation between lncRNA and miRNA expression levels, we identified 10 lncRNA-miRNA relationships suggestive of novel ceRNA network with relevance in MM.
Project description:The identification of deregulated microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in multiple myeloma (MM) has progressively added a further level of complexity to MM biology. In addition, the cross-regulation between lncRNAs and miRNAs has begun to emerge, and theoretical and experimental studies have demonstrated the competing endogenous RNAs (ceRNAs) activity of lncRNAs as natural miRNA decoys in pathophysiological conditions, including cancer. Currently, information concerning lncRNA and miRNA interplay in MM is virtually absent. Herein, we investigated in silico the lncRNA and miRNA relationship in a representative datasets encompassing 95 MM and 30 plasma cell leukemia patients at diagnosis and in four normal controls, whose expression profiles were generated by a custom annotation pipeline to detect specific lncRNAs. We applied target prediction analysis based on miRanda and RNA22 algorithms to 235 lncRNAs and 459 miRNAs selected with a potential pivotal role in the pathology of MM. Among pairs that showed significant correlation between lncRNA and miRNA expression levels, we identified 10 lncRNA-miRNA relationships suggestive of novel ceRNA network with relevance in MM.
Project description:Multiple myeloma (MM) is a clonal proliferation of bone marrow plasma cells characterized by highly heterogeneous genetic background and clinical course, whose pathogenesis remains largely unknown. Long ncRNAs (lncRNAs) are a large class of non-protein-coding RNA, involved in many physiological cellular and genomic processes as well as in carcinogenesis and tumor evolution. Although still in its infancy, the role of lncRNAs in MM is progressively expanding. Besides studies on selected candidates, lncRNAs expression at genome-wide transcriptome level is confined to microarray technologies, thus investigating a limited collection of transcripts. In the present study investigating a cohort of 30 MM patients, a deep RNA-sequencing analysis overwhelmed previous array studies and allowed the most accurate definition of lncRNA transcripts structure and expression, ultimately providing a comprehensive catalogue of lncRNAs specifically associated with the main MM molecular subgroups and genetic alterations. Despite the small number of analyzed samples, the high accuracy of RNA-sequencing approach for complex transcriptome processing led to the identification of 391 deregulated lncRNAs, 67% of which were also detectable and validated by whole-transcript microarrays. In addition, we identified a list of lncRNAs, with potential relevance in MM, co-expressed and in close proximity to genes that might undergo a cis-regulatory relationship.
Project description:Although long intergenic non-coding RNAs (lincRNA) role in various cancers is described, their significance in Multiple Myeloma (MM) remains poorly defined. Here we have studied the lincRNA profile and their clinical impact in MM. We performed RNA-seq on MM cells from 308 newly diagnosed and uniformly treated patients, 16 normal plasma cells and utilized RNA-seq data from 532 newly diagnosed patients from CoMMpass study to analyze for lincRNAs. We observed 869 differentially expressed lincRNAs in MM compared to normal plasma cells. We identified 14 lincRNAs associated with PFS and calculated a risk score to stratify patients. The median PFS between high vs low-risk groups was 17 months vs not-reached (NR); and OS 30 months vs NR, respectively (p?<?0.0001 for both). In the independent validation dataset between high and low-risk groups, PFS was 27 vs 42 months (HR 2.06 [1.44-2.96]; p?<?0.0005); and 4-year OS 62% vs 86% (HR 2.76 [1.51-5.05]; p?<?0.0005) confirming significant clinical relevance of lincRNA in MM. Importantly, lincRNA signature was able to further identify patients with significant differential outcomes within each low and high-risk categories identified using standard risk categorization including cytogenetic/FISH, ISS, and MRD negative or positive. Our results suggest that lincRNAs have an independent effect on MM outcome and provide a rationale to evaluate its molecular and biological impact.