Project description:Cells secrete extracellular RNA (exRNA) to their surrounding environment and exRNA has been found in many body fluids such as blood, breast milk and cerebrospinal fluid. However, there are conflicting results regarding the nature of exRNA. Here, we have separated 2 distinct exRNA profiles released by mast cells, here termed high-density (HD) and low-density (LD) exRNA. The exRNA in both fractions was characterized by microarray and next-generation sequencing. Both exRNA fractions contained mRNA and miRNA, and the mRNAs in the LD exRNA correlated closely with the cellular mRNA, whereas the HD mRNA did not. Furthermore, the HD exRNA was enriched in lincRNA, antisense RNA, vault RNA, snoRNA, and snRNA with little or no evidence of full-length 18S and 28S rRNA. The LD exRNA was enriched in mitochondrial rRNA, mitochondrial tRNA, tRNA, piRNA, Y RNA, and full-length 18S and 28S rRNA. The proteomes of the HD and LD exRNA-containing fractions were determined with LC-MS/MS and analyzed with Gene Ontology term finder, which showed that both proteomes were associated with the term extracellular vesicles and electron microscopy suggests that at least a part of the exRNA is associated with exosome-like extracellular vesicles. Additionally, the proteins in the HD fractions tended to be associated with the nucleus and ribosomes, whereas the LD fraction proteome tended to be associated with the mitochondrion. We show that the 2 exRNA signatures released by a single cell type can be separated by floatation on a density gradient. These results show that cells can release multiple types of exRNA with substantial differences in RNA species content. This is important for any future studies determining the nature and function of exRNA released from different cells under different conditions.
Project description:Cells secrete extracellular RNA (exRNA) to their surrounding environment and exRNA has been found in many body fluids such as blood, breast milk and cerebrospinal fluid. However, there are conflicting results regarding the nature of exRNA. Here, we have separated two distinct exRNA profiles released by mast cells, here termed high-density (HD) and low-density (LD) exRNA. The exRNA in both fractions was characterized by microarray and next-generation sequencing. Both exRNA fractions contained mRNA and miRNA, and the mRNAs in the LD exRNA correlated closely with the cellular mRNA, whereas the HD mRNA did not. Furthermore, the HD exRNA was enriched in lincRNA, antisense RNA, vault RNA, snoRNA, and snRNA with little or no evidence of full-length 18S and 28S rRNA. The LD exRNA was enriched in mitochondrial rRNA, mitochondrial tRNA, tRNA, piRNA, Y RNA, and full-length 18S and 28S rRNA. The proteomes of the HD and LD exRNA-containing fractions were determined with LC-MS/MS and analysed with Gene Ontology term finder, which showed that both proteomes were associated with the term extracellular vesicles and electron microscopy suggests that at least a part of the exRNA is associated with exosome-like extracellular vesicles. Additionally, the proteins in the HD fractions tended to be associated with the nucleus and ribosomes, whereas the LD fraction proteome tended to be associated with the mitochondrion. We show that the two exRNA signatures released by a single cell type can be separated by floatation on a density gradient. These results show that cells can release multiple types of exRNA with substantial differences in RNA species content. This is important for any future studies determining the nature and function of exRNA released from different cells under different conditions.
Project description:Cells secrete extracellular RNA (exRNA) to their surrounding environment and exRNA has been found in many body fluids such as blood, breast milk and cerebrospinal fluid. However, there are conflicting results regarding the nature of exRNA. Here, we have separated two distinct exRNA profiles released by mast cells, here termed high-density (HD) and low-density (LD) exRNA. The exRNA in both fractions was characterized by microarray and next-generation sequencing. Both exRNA fractions contained mRNA and miRNA, and the mRNAs in the LD exRNA correlated closely with the cellular mRNA, whereas the HD mRNA did not. Furthermore, the HD exRNA was enriched in lincRNA, antisense RNA, vault RNA, snoRNA, and snRNA with little or no evidence of full-length 18S and 28S rRNA. The LD exRNA was enriched in mitochondrial rRNA, mitochondrial tRNA, tRNA, piRNA, Y RNA, and full-length 18S and 28S rRNA. The proteomes of the HD and LD exRNA-containing fractions were determined with LC-MS/MS and analysed with Gene Ontology term finder, which showed that both proteomes were associated with the term extracellular vesicles and electron microscopy suggests that at least a part of the exRNA is associated with exosome-like extracellular vesicles. Additionally, the proteins in the HD fractions tended to be associated with the nucleus and ribosomes, whereas the LD fraction proteome tended to be associated with the mitochondrion. We show that the two exRNA signatures released by a single cell type can be separated by floatation on a density gradient. These results show that cells can release multiple types of exRNA with substantial differences in RNA species content. This is important for any future studies determining the nature and function of exRNA released from different cells under different conditions.
Project description:Cells secrete extracellular RNA (exRNA) to their surrounding environment and exRNA has been found in many body fluids such as blood, breast milk and cerebrospinal fluid. However, there are conflicting results regarding the nature of exRNA. Here, we have separated two distinct exRNA profiles released by mast cells, here termed high-density (HD) and low-density (LD) exRNA. The exRNA in both fractions was characterized by microarray and next-generation sequencing. Both exRNA fractions contained mRNA and miRNA, and the mRNAs in the LD exRNA correlated closely with the cellular mRNA, whereas the HD mRNA did not. Furthermore, the HD exRNA was enriched in lincRNA, antisense RNA, vault RNA, snoRNA, and snRNA with little or no evidence of full-length 18S and 28S rRNA. The LD exRNA was enriched in mitochondrial rRNA, mitochondrial tRNA, tRNA, piRNA, Y RNA, and full-length 18S and 28S rRNA. The proteomes of the HD and LD exRNA-containing fractions were determined with LC-MS/MS and analysed with Gene Ontology term finder, which showed that both proteomes were associated with extracellular vesicles. Additionally, the proteins in the HD fractions tended to be associated with the nucleus and ribosomes, whereas the LD fraction proteome tended to be associated with the mitochondrion. We show that the two exRNA signatures released by a single cell type can be separated by floatation on a density gradient. These results show that cells can release multiple types of exRNA with substantial differences in RNA species content. This is important for any future studies determining the nature and function of exRNA released from different cells under different conditions.
Project description:Central nervous system tumors are classified based on an integrated diagnosis combining histology and molecular characteristics, including IDH1/2 and H3-K27M mutations, as well as 1p/19q codeletion. Here, we aimed to develop and assess the feasibility of a glioma-tailored 48-gene next-generation sequencing (NGS) panel for integrated glioma diagnosis. We designed a glioma-tailored 48-gene NGS panel for detecting 1p/19q codeletion and mutations in IDH1/2, TP53, PTEN, PDGFRA, NF1, RB1, CDKN2A/B, CDK4, and the TERT promoter (TERTp). We analyzed 106 glioma patients (grade II: 19 cases, grade III: 23 cases, grade IV: 64 cases) using this system. The 1p/19q codeletion was detected precisely in oligodendroglial tumors using our NGS panel. In a cohort of 64 grade Ⅳ gliomas, we identified 56 IDH-wildtype glioblastomas. Within these IDH-wildtype glioblastomas, 33 samples (58.9%) showed a mutation in TERTp. Notably, PDGFRA mutations and their amplification were more commonly seen in TERTp-wildtype glioblastomas (43%) than in TERTp-mutant glioblastomas (6%) (P = .001). Hierarchical molecular classification of IDH-wildtype glioblastomas revealed 3 distinct groups of IDH-wildtype glioblastomas. One major cluster was characterized by mutations in PDGFRA, amplification of CDK4 and PDGFRA, homozygous deletion of CDKN2A/B, and absence of TERTp mutations. This cluster was significantly associated with older age (P = .021), higher Ki-67 score (P = .007), poor prognosis (P = .012), and a periventricular tumor location. We report the development of a glioma-tailored NGS panel for detecting 1p/19q codeletion and driver gene mutations on a single platform. Our panel identified distinct subtypes of IDH- and TERTp-wildtype glioblastomas with frequent PDGFRA alterations.
Project description:ObjectivesBardet-Biedl syndrome (BBS) is an autosomal recessive pleiotropic ciliopathy, which includes multi-organ clinical manifestations. The known genes involved in the development of the disease account for the causality in about 80% of the examined cases.Materials & methodsWe investigated two Iranian unrelated clinically diagnosed BBS patients, using a targeted next-generation sequencing panel consisting of 18 known BBS genes. The detected variants were investigated in the pedigree and studied using in silico tools for their pathogenicity. Patients' phenotypes were also assessed.ResultsNovel homozygous variants were detected in BBS9 gene in each patient, c.2014C>T, p.Gln672Ter and c.673_674insAA, p.Gln225GlnfsX10. The variants were segregated in the corresponding pedigree and were authenticated to obtain enough evidence to be categorized as pathogenic variants.ConclusionPatients with truncating mutations in the same gene seem to show similar phenotypic features. Detection of novel and family-specific mutations is typically expected in the genetic hereditary diseases in Iran, which can finally lead to prevent the recurrence of the disease in the consanguineous marriages.
Project description:Immune checkpoint blockade (ICB) therapies have revolutionized the treatment of human cancers including lung adenocarcinoma (LUAD). However, our understanding of the immune subtyping of LUAD and its association with clinical response of immune checkpoint inhibitor remains incomplete. Here we performed molecular subtyping and association analysis of LUAD from the Cancer Genome Atlas (TCGA) and validated findings from TCGA cohort in 9 independent validation cohorts. We conducted consensus molecular subtyping with nonnegative matrix factorization (NMF). Potential response of ICB therapy was estimated with Tumor Immune Dysfunction and Exclusion (TIDE) algorithm. We identified 2 distinct subtypes of LUAD in TCGA cohort that were characterized by significantly different survival outcomes (i.e., high- and low-risk subtypes). The high-risk subtype was featured by lower TIDE score, upregulation of programmed death-ligand 1 (PD-L1) expression, and higher tumor mutation burden (TMB). The high-risk subtype also harbored significantly elevated cell cycle modulators CDK4/CDK6 and TP53 mutation. These observations were validated in 9 independent LUAD cohorts. Our findings suggest that immune checkpoint blockade therapy may be efficacious for high-risk subtype of LUAD patients.
Project description:The isolation of extracellular vesicles (EVs) using currently available methods frequently compromises purity and yield to prioritize speed. Here, we present a next-generation aqueous two-phase system (next-gen ATPS) for the isolation of EVs regardless of scale and volume that is superior to conventional methods such as ultracentrifugation (UC) and commercial kits. This is made possible by the two aqueous phases, one rich in polyethylene glycol (PEG) and the other rich in dextran (DEX), whereby fully encapsulated lipid vesicles preferentially migrate to the DEX-rich phase to achieve a local energy minimum for the EVs. Isolated EVs as found in the DEX-rich phase are more amenable to biomarker analysis such as nanoscale flow cytometry (nFC) when using various pre-conjugated antibodies specific for CD9, CD63 and CD81. TRIzol RNA isolation is further enabled by the addition of dextranase, a critical component of this next-gen ATPS method. RNA yield of next-gen ATPS-isolated EVs is superior to UC and other commercial kits. This negates the use of specialized EV RNA extraction kits. The use of dextranase also enables more accurate immunoreactivity of pre-conjugated antibodies for the detection of EVs by nFC. Transcriptomic analysis of EVs isolated using the next-gen ATPS revealed a strong overlap in microRNA (miRNA), circular RNA (circRNA) and small nucleolar RNA (snoRNA) profiles with EV donor cells, as well as EVs isolated by UC and the exoRNeasy kit, while detecting a superior number of circRNAs compared to the kit in human samples. Overall, this next-gen ATPS method stands out as a rapid and highly effective approach to isolate high-quality EVs in high yield, ensuring optimal extraction and analysis of EV-encapsulated nucleic acids.
Project description:Emerging next-generation sequencing (NGS) technology potentially resolves many issues that prevent widespread clinical use of gene expression microarrays. However, the number of publicly available NGS datasets is still smaller than that of microarrays. This paper explores the possibilities for combining information from both microarray and NGS gene expression datasets for the discovery of differentially expressed genes (DEGs). We evaluate several existing methods in detecting DEGs using individual datasets as well as combined NGS and microarray datasets. Results indicate that analysis of combined NGS and microarray data is feasible, but successful detection of DEGs may depend on careful selection of algorithms as well as on data normalization and pre-processing.