Genomics

Dataset Information

0

Deletion of Histone Deacetylase 3 in Adult Beta Cells Improves Glucose Tolerance via Increased Insulin Secretion


ABSTRACT: Objective: Histone deacetylases are epigenetic regulators known to control gene transcription in various tissues. A member of this family, histone deacetylase 3 (HDAC3), has been shown to regulate metabolic genes. Cell culture studies with HDAC-specific inhibitors and siRNA suggest that HDAC3 plays a role in pancreatic β-cell function, but a recent genetic study in mice has been contradictory. Here we address the functional role of HDAC3 in β-cells of adult mice. Methods: An HDAC3 β-cell specific knockout was generated in adult MIP-CreERT transgenic mice using the Cre-loxP system. Induction of HDAC3 deletion was initiated at 8 weeks of age with administration of tamoxifen in corn oil (2 mg/day for 5 days). Mice were assayed for glucose tolerance, glucose-stimulated insulin secretion, and islet function 2 weeks after induction of the knockout. Transcriptional functions of HDAC3 were assessed by ChIP-seq as well as RNA-seq comparing control and -cell knockout islets. Results: HDAC3 β-cell specific knockout (HDAC3βKO) did not increase total pancreatic insulin content or β-cell mass. However, HDAC3βKO mice demonstrated markedly improved glucose tolerance. This improved glucose metabolism coincided with increased basal and glucose-stimulated insulin secretion in vivo as well as in isolated islets. Cistromic and transcriptomic analyses of pancreatic islets revealed that HDAC3 regulates multiple genes that contribute to glucose-stimulated insulin secretion. Conclusions: HDAC3 plays an important role in regulating insulin secretion in vivo and therapeutic intervention may improve glucose homeostasis.

ORGANISM(S): Mus musculus

PROVIDER: GSE90531 | GEO | 2016/11/26

SECONDARY ACCESSION(S): PRJNA354962

REPOSITORIES: GEO

Similar Datasets

| E-GEOD-67991 | biostudies-arrayexpress
| E-GEOD-68317 | biostudies-arrayexpress
2022-05-16 | GSE191194 | GEO
2016-01-01 | GSE67991 | GEO
2024-01-18 | MODEL2401110001 | BioModels
2022-10-10 | GSE213729 | GEO
2022-10-10 | GSE213730 | GEO
2019-02-01 | GSE125350 | GEO
2015-06-18 | GSE68317 | GEO
2019-03-15 | PXD012671 | Pride