Project description:Iron-rich pelagic aggregates (iron snow) were collected directly onto silicate glass filters using an electronic water pump installed below the redoxcline. RNA was extracted and library preparation was done using the NEBNext Ultra II directional RNA library prep kit for Illumina. Data was demultiplied by GATC sequencing company and adaptor was trimmed by Trimgalore. After trimming, data was processed quality control by sickle and mRNA/rRNA sequences were sorted by SortmeRNA. mRNA sequences were blast against NCBI-non redundant protein database and the outputs were meganized in MEGAN to do functional analysis. rRNA sequences were further sorted against bacterial/archeal 16S rRNA, eukaryotic 18S rRNA and 10,000 rRNA sequences of bacterial 16S rRNA, eukaryotic 18S rRNA were subset to do taxonomy analysis.
Project description:Compilation of the targeted metabolomics data present in the associated paper: Metabolic mutations induce antibiotic resistance by pathway-specific bottlenecks.
See "File names association" table in "supplementary files" to link file names with paper figures.
Project description:The interplay between pathogens and hosts has been studied for decades using targeted approaches such as the analysis of mutants and host immunological responses. Although much has been learned from such studies, they focus on individual pathways and fail to reveal the global effects of infection on the host. To alleviate this issue, high-throughput methods such as transcriptomics and proteomics have been used to study host-pathogen interactions. Recently, metabolomics was established as a new method to study changes in the biochemical composition of host tissues. We report a metabolomics study of Salmonella enterica serovar Typhimurium infection. We used Fourier Transform Ion Cyclotron Resonance Mass Spectrometry with Direct Infusion to reveal that dozens of host metabolic pathways are affected by Salmonella in a murine infection model. In particular, multiple host hormone pathways are disrupted. Our results identify unappreciated effects of infection on host metabolism and shed light on mechanisms used by Salmonella to cause disease, and by the host to counter infection. Female C57BL/6 mice were infected with Salmonella enterica serovar Typhimurium SL1344 cells by oral gavage. Feces and livers were collected and metabolites extracted using acetonitrile. For experiments with feces, samples were collected from 4 mice before and after infection. For liver experiments, 11 uninfected and 11 infected mice were used. Samples were combined into 3 groups of 3-4 mice each, resulting in the analysis of 3 group samples of uninfected and 3 of infected mice. Extracts were infused into a 12-T Apex-Qe hybrid quadrupole-FT-ICR mass spectrometer equipped with an Apollo II electrospray ionization source, a quadrupole mass filter and a hexapole collision cell. Raw mass spectrometry data were processed as described elsewhere (Han et al. 2008. Metabolomics. 4:128-140 [PMID 19081807]). To identify differences in metabolite composition between uninfected and infected samples, we filtered the list of masses for metabolites which were present on one set of samples but not the other. Additionally, we calculated the ratios between averaged intensities of metabolites from uninfected and infected mice. To assign possible metabolite identities, monoisotopic neutral masses of interest were queried against MassTrix (http://masstrix.org). Masses were searched against the Mus musculus database within a mass error of 3 ppm. Data were analyzed by unpaired t tests with 95% confidence intervals.
Project description:The below table includes a smaller list of data that was analyzed by dChip and filtered by pvalue such that a file with about 4600 genes was obtained, which allowed for ease of use from 40,000 genes. Keywords: static vs simulated microgravity
Project description:The interplay between pathogens and hosts has been studied for decades using targeted approaches such as the analysis of mutants and host immunological responses. Although much has been learned from such studies, they focus on individual pathways and fail to reveal the global effects of infection on the host. To alleviate this issue, high-throughput methods such as transcriptomics and proteomics have been used to study host-pathogen interactions. Recently, metabolomics was established as a new method to study changes in the biochemical composition of host tissues. We report a metabolomics study of Salmonella enterica serovar Typhimurium infection. We used Fourier Transform Ion Cyclotron Resonance Mass Spectrometry with Direct Infusion to reveal that dozens of host metabolic pathways are affected by Salmonella in a murine infection model. In particular, multiple host hormone pathways are disrupted. Our results identify unappreciated effects of infection on host metabolism and shed light on mechanisms used by Salmonella to cause disease, and by the host to counter infection.