Project description:Plasmodium falciparum secretes extracellular vesicles that contain RNA. The biological benefit of this secretion to the secreting parasite is not known. Here, we sequenced the RNA content of extracellular vesicles and compared with that of the secreting whole parasites. The data suggests that extracellular vesicles might be part of a post-transcriptional regulatory mechanism that shapes intracellular RNA levels in the parasite.
Project description:Similar to bacterial proteins that are targeted to distinct macrophages organelles via extracellular vesicles, we propose that these vesicles also traffic small RNAs to modulate specific host factors. To test this, we aim to sequence extracellular vesicle derived sRNA, and whole bacterial small RNAs to determine selectivity, and to identify their bacterial and mammalian targets (Experimental Plan in Table-1). For this we will collect highly purified vesicles from N. gonorrhoeae (strain MS11A). We will also treat mouse derived primary macrophages with extracellular vesicles and compare their RNA response to untreated macrophages (Table-2). This will provide novel insights into how macrophages respond to N. gonorrhoeae infections. This data is part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/
Project description:A growing body of evidence in mammalian cells indicates that secreted vesicles can be used to mediate intercellular communication processes by transferring various bioactive molecules, including mRNAs and microRNAs. Based on these findings, we decided to analyze whether T. cruzi-derived extracellular vesicles contain RNA molecules and performed a deep sequencing and genome-wide analysis of a size-fractioned cDNA library (16M-bM-^@M-^S40 nt) from extracellular vesicles secreted by noninfective epimastigote and infective metacyclic trypomastigote forms. Our data show that the small RNAs contained in these extracellular vesicles originate from multiple sources, including tRNAs. In addition, our results reveal that the variety and expression of small RNAs are different between parasite stages, suggesting diverse functions. Taken together, these observations call attention to the potential regulatory functions that these RNAs might play once transferred between parasites and/or to mammalian host cells. Small RNAs profiles (16-40 nt) of epimastigote-derived extracellular vesicles, metacyclic trypomastigote-derived extracellular vesicles and metacyclic trypomastigote parental cells.