Project description:Whole blood was collected as part of monthly veterinary checkups of bottlenose dolphins housed at Dolphing Quest in Waikoloa, Hawaii, USA. Gene expression from 5 samples was analyzed for comparison to the blood transcriptome of the beluga whale.
Project description:Inhibition of AMP-activated protein kinase (AMPK) is increasingly being explored for its therapeutic potential in some diseases, including certain types of cancers. However, AMPK-inhibitory tool compounds have largely been limited to compound C/dorsomorphin and SBI-0206965, both of which display numerous off-target effects and blocking AMPK-independent metabolic processes. Here we describe molecular insights and cellular actions/utility of a recently identified potent AMPK inhibitor BAY-3827. Sequence analysis of highly/lowly-inhibited kinases by BAY-3827, based on in vitro kinase selectivity profiling, predicted key conserved residues involved in the compound-inhibitory effect. A co-crystal structure of the AMPK kinase domain (KD)-BAY-3827 complex resolved at 2.5 Å in comparison with previously reported KD-inhibitor structures, revealed an overlapping binding site in the ATP-binding pocket and common αC helix-out conformations. We identified distinct features of BAY-3827-bound structure which involve a disulfide bridge between αD helix Cys106 and activation loop residue Cys174. This may help to stabilize AMPK conformation upon BAY-3827 binding, where the position of activation loop Asn162 leads the DFG motif Phe158 to adopt a conformation facing the C-terminal kinase lobe displacing His137, leading to a broken regulatory spine and an inactive kinase state. BAY-3827 at 2.5-5 μM, but not structurally resembling inactive BAY-974, fully blocked AMPK activator (MK-8722)-mediated phosphorylation of ACC1 and inhibition of lipogenesis in hepatocytes. Unbiased transcriptome analysis in MK-8722-treated wild-type and AMPK-null hepatocytes revealed that >30% of MK-8722-stimulated AMPK-dependent genes could be downregulated by 5 μM BAY-3827. Based on its greater selectivity and potency substantiated by comprehensive molecular/cellular investigations. BAY-3827 is a powerful tool to delineate AMPK functions.
Project description:The activation of the transcription factor Hypoxia-inducible factor-1 (HIF-1) plays an essential role in tumor development, tumor progression and resistance to chemo- and radiotherapy. In order to identify compounds targeting the HIF pathway, a small-molecule library was screened using a luciferase-driven HIF-1 reporter cell line under hypoxia. The high throughput screen led to the identification of a class of aminoalkyl-substituted compounds that inhibited hypoxia-induced HIF-1 target gene expression in human lung cancer cell lines at low nanomolar concentrations but did not affect expression levels of genes outside of the HIF-1 pathway. Lead structure BAY 87-2243 was found to inhibit HIF-1α protein accumulation under hypoxic conditions in NSCLC cell line H460 but had no effect on HIF-1α protein accumulation and HIF target gene expression in RCC4 cells lacking VHL activity or in H460 cells after inhibition of HIF prolyl hydroxylase activity. BAY 87-2243 had no effect on HIF-α-mRNA levels. Antitumor activity of BAY 87-2243 and suppression of HIF-1 target gene expression in vivo was demonstrated in a H460 xenograft model. BAY 87-2243 did not inhibit cell proliferation under standard conditions. However under glucose depletion, a condition favoring mitochondrial ATP generation as energy source, BAY 87-2243 inhibited cell proliferation in the nanomolar range. Further experiments revealed that BAY 87-2243 inhibits mitochondrial production of reactive oxygen species (ROS) by blocking complex I activity but has no effect on complex III activity. Lowering of mitochondrial ROS production to reduce hypoxia-induced HIF-1 activity in tumors might be an interesting therapeutic approach to overcome chemo- and radiotherapy-resistance of hypoxic tumors. We used microarrays to detail the global programme of gene expression that is induced in NSCLC cell line H460 upon hypoxia (16 h incubation at 1 % pO2) and evaluated a dose-dependent effect of our HIF-1-pathway inhibitor BAY 87-2243 on genes tthat are affected by hypoxia.
Project description:To identify the gene expression changes in NRAS mutant cell line SKMEL-103, KRAS mutant cell line AsPC1 and HRAS mutant cell line RH-36 upon BAY 11-7082 treatment, we analyzed these cell line with either control DMSO or BAY 11-7082 treatment via RNA sequencing.