Project description:Vertebrates have highly methylated genomes at CpG positions while most invertebrates have sparsely methylated genomes. Therefore, hypermethylation is considered a major innovation that shaped the genome and the regulatory roles of DNA methylation in vertebrates. However, here we report that the marine sponge Amphimedon queenslandica, belonging to one of the earliest branching animal lineages, has evolved a hypermethylated genome with remarkable similarities to that of a vertebrate. Despite major differences in genome size and architecture, independent acquisition of hypermethylation reveal common distribution patterns and repercussions for genome regulation between both lineages. Genome wide depletion of CpGs is counterbalanced by CpG enrichment at unmethylated promoters, mirroring CpG islands. Furthermore, a subset of CpG-bearing transcription factor motifs are enriched at Amphimedon unmethylated promoters. We find that the animal-specific transcription factor NRF has conserved methyl-sensitivity over 700 million years, indicating an ancient cross-talk between transcription factors and DNA methylation. Finally, the sponge shows vertebrate-like levels of 5-hydroxymethylcytosine, the oxidative derivative of cytosine methylation involved in active demethylation. Hydroxymethylation is concentrated in regions that are enriched for transcription factor motifs and show developmentally dynamic demethylation. Together, these findings push back the links between DNA methylation and its regulatory roles to the early steps of animal evolution. Thus, the Amphimedon methylome challenges the prior hypotheses about the origins of vertebrate genome hypermethylation and its implications for regulatory complexity.
Project description:In order to compare sponge and eumetazoan (higher animal) body plans, we identified and studied expression of a broad range of eumetazoan developmental regulatory genes in Sycon ciliatum (Calcispongiae). In this species, embryonic development is semi-synchronous within a population, synchronous within individuals, and oocytes and embryos occupy a significant fraction of the volume of the sponges during the reproductive period. RNASeq libraries representing non-reproductive (somatic) tissue slices along the body axis, as well as oocytes, embryos and free swimming larvae were generated from material obtained by sampling throughout the life cycle.
Project description:In order to compare sponge and eumetazoan (higher animal) body plans, we identified and studied expression of a broad range of eumetazoan developmental regulatory genes in Sycon ciliatum (Calcispongiae). In this species, embryonic development is semi-synchronous within a population, synchronous within individuals, and oocytes and embryos occupy a significant fraction of the volume of the sponges during the reproductive period. RNASeq libraries representing non-reproductive (somatic) tissue slices along the body axis, as well as oocytes, embryos and free swimming larvae were generated from material obtained by sampling throughout the life cycle.
Project description:Marine pelagic larvae from throughout the animal kingdom use a hierarchy of environmental cues to identify a suitable benthic habitat on which to settle and metamorphose into the reproductive phase of the life cycle. The majority of larvae are induced to settle by biochemical cues and many species have long been known to preferentially settle in the dark. Combined, these data suggest that larval responses to light and biochemical cues may be linked, but this is yet to be explored at the molecular level. Here, we track vertical position of larvae of the sponge Amphimedon queenslandica to show that they descend to the benthos at twilight, by which time they are competent to respond to biochemical cues, consistent with them naturally settling in the dark. We then conduct larval settlement assays under three different light regimes (natural day-night, constant dark or constant light), and use transcriptomics on individual larvae to identify candidate molecular pathways underlying the different settlement responses that we observe. We find that constant light prevents larval settlement in response to biochemical cues, likely via actively repressing chemostransduction; this is consistent with the sustained upregulation of a photosensory cryptochrome and two putative inactivators of G-protein signalling in the constant light only. We hypothesise that photo- and chemosensory systems may be hierarchically integrated into ontogeny to regulate larval settlement via nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) signalling in this sponge that belongs to one of the earliest branching of the extant animal lineages.
Project description:Secondary metabolites from the marine sponge of the genus Aaptos. The specimens were collected during 2017-2019 around Sabang and Aceh islands, Indonesia. The extracts and standards were provided in this study.
Project description:Multiple myeloma is characterized by frequent chromosomal alterations. Protein Arginine Methyltransferase 5 (PRMT5) catalyzes symmetric dimethylation of arginine, a post-translational modification involved in cancer and embryonic development. We sought to functionally validate the role of PRMT5 and delineate their downstream target genes in MM. Using “sponge” lentiviral vectors to knock down PRMT5 in vitro and in vivo, we have documented enhanced apoptosis and descend proliferation of MM cells compared with control lentivirus sponge . Expression profiling analysis of PRMT5-deficient cells identified a large number of downstream target genes, which provides a valuable tool to investigate their function in MM pathogenesis and their potential use as therapeutic targets.