Project description:In this study, we analyzed if Actinomadura sp. RB99 produces siderophores that that could be responsible for the antimicrobial activity observed in co-cultivation studies. Dereplication of high-resolution tandem mass spectrometry (HRMS/MS) and global natural product social molecular networking platform (GNPS) analysis of fungus-bacterium co-cultures resulted in the identification of five madurastatin derivatives (A1, A2, E1, F, and G1), of which were four new derivatives. Chemical structures were unambiguously confirmed by HR-ESI-MS, 1D and 2D NMR experiments, as well as MS/MS data and their absolute structures were elucidated based on Marfey's analysis, DP4+ probability calculation and total synthesis. Structure analysis revealed that madurastatin E1 (2) contained a rare 4-imidazolidinone cyclic moiety and madurastatin A1 (5) was characterized as a Ga3+ -complex. The function of madurastatins as siderophores was evaluated using the fungal pathogen Cryptococcus neoformans as model organism. Based on homology models, we identified the putative NRPS-based gene cluster region of the siderophores in Actinomadura sp. RB99.
Project description:A major goal in the discovery of bioactive natural products is to rapidly identify active compound(s) and dereplicate known molecules from complex biological extracts. The conventional bioassay-guided fractionation process can be time consuming and often requires multi-step procedures. Herein, we apply a metabolomic strategy merging multivariate data analysis and multi-informative molecular maps to rapidly prioritize bioactive molecules directly from crude plant extracts. The strategy was applied to 59 extracts of three Bacopa species (B. monnieri, B. caroliniana and B. floribunda), which were profiled by UHPLC-HRMS2 and screened for anti-lipid peroxidation activity. Using this approach, six lipid peroxidation inhibitors 1‒6 of three Bacopa spp. were discovered, three of them being new compounds: monnieraside IV (4), monnieraside V (5) and monnieraside VI (6). The results demonstrate that this combined approach could efficiently guide the discovery of new bioactive natural products. Furthermore, the approach allowed to evidence that main semi-quantitative changes in composition linked to the anti-lipid peroxidation activity were also correlated to seasonal effects notably for B. monnieri.