ABSTRACT: Raw MS files for the manuscript, "A novel inhibitor of P. aeruginosa folate metabolism exploits metabolic differences for narrow-spectrum antibiotic targeting", by Chain et al.
Project description:Raw MS files for the manuscript, "A novel inhibitor of P. aeruginosa folate metabolism exploits metabolic differences for narrow-spectrum antibiotic targeting", by Chain et al.
Project description:Pseudomonas aeruginosa is a leading cause of hospital acquired infections for which the development of new antibiotics is urgently needed. Unlike most enteric bacteria, P. aeruginosa lacks thymidine kinase and thymidine phosphorylase activity, and thus cannot scavenge exogenous thymine. An appealing strategy to selectively target P. aeruginosa while leaving the healthy microbiome largely intact would thus be to disrupt thymidine synthesis while providing exogenous thymine. However, this approach was previously intractable because known antibiotics that perturb thymidine synthesis are largely inactive against P. aeruginosa. Here, we characterize a novel dihydrofolate reductase inhibitor, fluorofolin, that exhibits significant activity against P. aeruginosa in culture and in a mouse thigh infection model. Fluorofolin is active against a wide range of clinical P. aeruginosa isolates resistant to known antibiotics, including critical antibiotic development priorities expressing the beta-lactamases KPC-5 and NDM-1. Importantly, in the presence of thymine supplementation, fluorofolin activity is selective for P. aeruginosa. Resistance to fluorofolin can emerge through overexpression of the efflux pumps MexCD-OprJ and MexEF-OprN. However, these mutants also decrease pathogenesis, in part due to increased export of quorum sensing precursors leading to decreased virulence factor production. Our findings thus demonstrate how understanding species-specific genetic differences and discovery of an antibiotic with a widely conserved target can enable selective targeting of important pathogens while revealing new tradeoffs between resistance and pathogenesis.
Project description:The Pseudomonas aeruginosa quorum-sensing (QS) systems contribute to bacterial homeostasis and pathogenicity. Although the AraC family transcription factor VqsM has been characterized to control the production of virulence factors and QS signaling molecules, its detailed regulatory mechanisms still remain elusive. Here, we report that VqsM directly binds to the lasI promoter region, and thus regulates its expression. To identify additional targets of VqsM in P. aeruginosa PAO1, we performed chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) which detected 48 enriched loci harboring VqsM-binding peaks in P. aeruginosa genome. The direct regulation of these genes by VqsM has been confirmed by Electrophoretic mobility shift assays (EMSAs) and quantitative real-time polymerase chain reactions (qRT-PCR). A VqsM-binding motif is found by using MEME suite and verified by footprint assays in vitro. In addition, VqsM directly binds to the promoter regions of antibiotic resistance regulator NfxB and the master type III system regulator ExsA. Notably, the vqsM mutant displayed more resistance to two types of antibiotics and promoted bacterial survival in a mouse model, compared to the wild type PAO1 strain. Collectively, this work provides new cues to better understand the detailed regulatory networks of QS systems, T3SS, and antibiotic resistance. Pseudomonas aeruginosa MAPO1 containing empty pAK1900 or pAK1900-VqsM-VSV
Project description:Pseudomonas aeruginosa is known to tolerate antibiotic therapy during infection. This prevents clearance of infection and negatively impacts patient outcomes. Here, we report the transcriptome sequence of antibiotic-treated and untreated P. aeruginosa cultures and the differential gene expression observed when treated cells are compared to untreated cells.
Project description:Bacteria in biofilms have higher antibiotic tolerance than their planktonic counterparts. A major outstanding question is the degree to which the biofilm-specific cellular state and its constituent genetic determinants contribute to this hyper-tolerant phenotype. Here, using genome-wide functional profiling of a complex, heterogeneous mutant population of Pseudomonas aeruginosa MPAO1, we identified large sets of mutations that contribute to antibiotic tolerance predominantly in the biofilm or planktonic setting only. Our mixed population-based experimental design recapitulated the complexity of natural biofilms and, unlike previous studies, revealed clinically observed behaviors including the emergence of quorum sensing-deficient mutants. Our study revealed a substantial contribution of the cellular state to the antibiotic tolerance of biofilms, providing a rational foundation for the development of novel therapeutics against P. aeruginosa biofilm-associated infections. This dataset compares the expression of SAH108, a strain with enhanced antibiotic tolerance in the biofilm state, to expression in wild-type strains. We compared the expression of two biological replicates from strain SAH108 to samples from three wild-type, reference strains. All samples were collected from exponentially-growing planktonic cultures.
Project description:Bacteria in biofilms have higher antibiotic tolerance than their planktonic counterparts. A major outstanding question is the degree to which the biofilm-specific cellular state and its constituent genetic determinants contribute to this hyper-tolerant phenotype. Here, using genome-wide functional profiling of a complex, heterogeneous mutant population of Pseudomonas aeruginosa MPAO1, we identified large sets of mutations that contribute to antibiotic tolerance predominantly in the biofilm or planktonic setting only. Our mixed population-based experimental design recapitulated the complexity of natural biofilms and, unlike previous studies, revealed clinically observed behaviors including the emergence of quorum sensing-deficient mutants. Our study revealed a substantial contribution of the cellular state to the antibiotic tolerance of biofilms, providing a rational foundation for the development of novel therapeutics against P. aeruginosa biofilm-associated infections. This dataset compares the expression of SAH108, a strain with enhanced antibiotic tolerance in the biofilm state, to expression in wild-type strains.
Project description:We investigate the differences in total gene expression between P.aeruginosa PAO1 (wild-type) and ΔersA isogenic mutant. ErsA is a small RNA involved in several P. aeruginosa phenotypes, including biofilm formation and antibiotic resistance. Cells were grown in a rich medium (BHI, Brain Heart Infusion) without any selective pressure (shaking at 37°C) and cells were harvested during stationary phase at OD600 2.7.
Project description:Surfing motility is a novel form of surface adaptation exhibited by the nosocomial pathogen, Pseudomonas aeruginosa, in the presence of the glycoprotein mucin that is found in high abundance at mucosal surfaces especially the lungs of cystic fibrosis and bronchiectasis patients. Here we investigated the adaptive antibiotic resistance of P. aeruginosa under conditions in which surfing occurs compared to cells undergoing swimming. P. aeruginosa surfing cells were significantly more resistant to several classes of antibiotics including aminoglycosides, carbapenems, polymyxins, and fluroquinolones. This was confirmed by incorporation of antibiotics into growth medium, which revealed a concentration-dependent inhibition of surfing motility that occurred at concentrations much higher than those needed to inhibit swimming. To investigate the basis of resistance, RNA-Seq was performed and revealed that surfing influenced the expression of numerous genes. Included amongst genes dysregulated under surfing conditions were multiple genes from the Pseudomonas resistome, which are known to affect antibiotic resistance when mutated. Screening transposon mutants in these surfing-dysregulated resistome genes revealed that several of these mutants exhibited changes in susceptibility to one or more antibiotics under surfing conditions, consistent with a contribution to the observed adaptive resistance. In particular, several mutants in resistome genes, including armR, recG, atpB, clpS, nuoB, and certain hypothetical genes such as PA5130, PA3576 and PA4292, showed contributions to broad-spectrum resistance under surfing conditions and could be complemented by their respective cloned genes. Therefore, we propose that surfing adaption led to extensive multidrug adaptive resistance as a result of the collective dysregulation of diverse genes.
Project description:Pseudomonas aeruginosa is a predominant pathogen in chronic lung infections in individuals with cystic fibrosis (CF). Epidemic strains of P. aeruginosa, such as the Liverpool Epidemic Strain (LES), are capable of transferring between CF patients and have been associated with increased hospital visits and antibiotic treatments. Comparative genomics and phenotypic assays have shown that antibiotic resistance profiles differ among LES isolates and that genotype–phenotype associations are difficult to establish for resistance phenotypes in clinical isolates of P. aeruginosa based on these comparisons alone. We compared two LES isolates, LESlike1 and LESB58, and the common laboratory strain P. aeruginosa PAO1 using label-free quantitative proteomics to more accurately predict functional differences between strains. The proteomes of the LES isolates were found to be more similar to each other than to PAO1. However, we also observed a number of differences in the abundance of proteins involved in quorum sensing, virulence, and antibiotic resistance, including in the comparison of LESlike1 and LESB58. Specifically, the proteomic data revealed a higher abundance of proteins involved in polymyxin and aminoglycoside resistance in LESlike1. Minimum inhibitory concentration assays confirmed that LESlike1 has higher resistance to antibiotics from these classes. These findings provide an example of the ability of proteomic data to complement genotypic and phenotypic studies to understand resistance in clinical isolates.