Project description:Isolated complex I (CI) deficiencies are a major cause of primary mitochondrial disease. A substantial proportion of CI deficiencies are believed to arise from defects in CI assembly factors (CIAFs) that are not part of the CI holoenzyme. The biochemistry of these CIAFs is poorly defined, making their role in CI assembly unclear, and confounding interpretation of potential disease-causing genetic variants. To address these challenges, we devised a deep mutational scanning approach to systematically assess the function of thousands of NDUFAF6 genetic variants. Guided by these data, biochemical analyses and cross-linking mass spectrometry, we discovered that the CIAF NDUFAF6 facilitates incorporation of NDUFS8 into CI and reveal that NDUFS8 overexpression rectifies NDUFAF6 deficiency. Our data further provide experimental support of pathogenicity for seven novel NDUFAF6 variants associated with human pathology and introduce functional evidence for over 5,000 additional variants. Overall, our work defines the molecular function of NDUFAF6 and provides a clinical resource for aiding diagnosis of NDUFAF6-related diseases.
Project description:UV cross-linking and immunoprecipitation (CLIP) and individual-nucleotide resolution CLIP (iCLIP) are the most frequently used methods to study protein-RNA interactions in the intact cells and tissues, but their relative advantages or inherent biases have not been evaluated. To benchmark CLIP and iCLIP method, we performed iCLIP with Nova protein, which is the most extensively studied protein by CLIP. Further, we assessed UV-C-induced cross-linking preferences, by exploiting the UV-independent formation of covalent RNA cross-links of the mutant RNA methylase NSUN2.
Project description:Structural study of the polyA signal recognition by the human CPSF using X-ray crystallography, cross-linking MS, pull-downs and fluorescence polarisation assays.
Project description:Cross-linking mass spectrometry (XL-MS) has been widely applied on capturing transient protein-protein interactions and modeling protein structure.
Project description:Chemical cross-linking mass spectrometry (CXMS) has emerged as a powerful technology to analyze protein complex structure and interaction. However, the spectral fragmentation behavior and spectral data retrieval of cross-linked peptides are more complex than single peptides. In this study, we designed and synthesized a trehalose-based MS-cleavable cross-linker, Trehalose Disuccinimidyl Ester (TDS), which possesses a CID/HCD-cleavable glycosidic bond and has good bioorthogonality and amphipathicity. Using TDS, the cross-linked peptides were simplified into conventional single peptides via the selective cleavage between glycosidic and peptide bonds under individual MS collision energy, which enhances the matching degree and retrieval throughput of spectral identification. The deep coverage of the TDS method facilitated the accurate resolution of the structural dynamics of purified proteins with different physicochemical properties and yeast 26S proteasome complex. Additionally, the bioorthogonality and amphipathicity of TDS enabled the cross-linking reaction to occur in vivo without the introduction of any organic solvent. Through coinciding with this feature and MS-cleavable capacity, TDS provided us a high throughput snapshot of the structural architecture of protein complex in live cells. These results provide a promising TDS toolkit to study CXMS and decipher the protein conformations and interactions with high accuracy and easy portability for cross-linker design.
Project description:Cross-linking MS data from the yeast Mediator complex. Cross-linking was performed using either BS3 or 1:1 mix of d0:d12 DSS. Includes unfractionated, SEC enriched, high pH reverse phase fractionated, DDA and inclusion list generated files.
Project description:Cross-linking Mass Spectrometry (XL-MS) is a powerful tool for examining protein structures and interactions. Nevertheless, anal-ysis of low-abundance cross-linked peptides is often limited in data-dependent acquisition (DDA) mode due to its semistochastic nature. To address this issue, we introduced a workflow called 4D-diaXLMS, representing the first-ever application of four-dimensional data-independent acquisition for proteome-wide cross-linking analysis.
Project description:As a part of a study on how kinetochors are assembled at the centromeres of the chromosomes, cross-linking/mass spectrometry has been applied to investigate interactions between Okp1/ Ame1 heterodimer, which is part of the COMA complex, and CENP-A from Saccharomyces cerevisiae.
Project description:Cross-linking mass spectrometry (XL-MS) is a powerful tool for studying protein-protein interactions and elucidating architectures of protein complexes. While residue-specific XL-MS studies have been very successful, accessibility of interaction regions non-targetable by specific chemistries remain difficult. Photochemistry has shown great potential in capturing those regions due to nonspecific reactivity, but low yields and high complexities of photocross-linked products have hindered their identification, limiting current studies predominantly to single proteins. Here, we describe the development of three novel MS-cleavable heterobifunctional cross-linkers, namely SDASO (Succinimidyl diazirine sulfoxide), to enable fast and accurate identification of photocross-linked peptides by MSn. The MSn-based workflow allowed SDASO XL-MS analysis of the yeast 26S proteasome, demonstrating the feasibility of photocross-linking of large protein complexes for the first time. Comparative analyses have revealed that SDASO cross-linking is robust and captures interactions complementary to residue-specific reagents, providing the foundation for future applications of photocross-linking in complex XL-MS studies.