Project description:Previous studies have demonstrated that the iron content in marine heterotrophic bacteria is comparatively higher than that of phytoplankton. Therefore, they have been indicated to play a major role in the biogeochemical cycling of iron. In this study, we aimed to investigate the potential of viral lysis as a source of iron for marine heterotrophic bacteria. Viral lysates were derived from the marine heterotrophic bacterium, Vibrio natriegens PWH3a (A.K.A Vibrio alginolyticus). The bioavailability of Fe in the lysates was determined using a model heterotrophic bacterium, namely, Dokdonia sp. strain Dokd-P16, isolated from Fe-limited waters along Line P transect in the Northeastern Pacific Ocean. The bacteria were grown under Fe-deplete or Fe-replete conditions before being exposed to the viral lysate. Differential gene expression following exposure to the viral lysate was analyzed via RNA sequencing to identify differentially expressed genes under iron-replete and iron-deplete conditions. This study would provide novel insights into the role of viral lysis in heterotrophic bacteria in supplying bioavailable iron to other marine microorganisms under iron-limiting and non-limiting conditions. First, the marine heterotrophic bacterium genome, Dokdonia sp. strain Dokd-P16, was sequenced to provide a genomic context for the expression studies. Subsequently, the relative gene expression in Dokdonia sp. strain Dokd-P16 grown under Fe limiting and non-limiting conditions were analyzed. This transcriptomic approach would be utilized to elucidate genes regulated by Fe availability in Dokdonia sp. strain Dokd-P16, which indicate its Fe-related response viral lysate exposure. Taken together, in this study, the transcriptomic responses of Fe-limited and non-limited marine heterotrophic bacteria were analyzed, which provided novel insights into the biological availability of Fe from the viral lysates.
Project description:Biofilms commonly develop in immunocompromised patients, which leads to persistent infections that are difficult to treat. In the biofilm state, bacteria are protected against both antibiotics and the host's immune system; currently, there are no therapeutics that target biofilms. In this study, we screened a chemical fraction library representing the natural product capacity of the microbiota of marine egg masses, namely, the moon snail egg collars. This led to the identification of active fractions targeting both Pseudomonas aeruginosa and Staphylococcus aureus biofilms. Subsequent analysis revealed that a subset of these fractions were capable of eradicating preformed biofilms, all against S. aureus. Bioassay-guided isolation led us to identify pseudochelin A, a known siderophore, as a S. aureus biofilm inhibitor with an IC50 of 88.5 μM. Mass spectrometry-based metabolomic analyses revealed widespread production of pseudochelin A among fractions possessing S. aureus antibiofilm properties. In addition, a key biosynthetic gene involved in producing pseudochelin A was detected on 30% of the moon snail egg collars and pseudochelin A is capable of inhibiting the formation of biofilms (IC50 50.6 μM) produced by ecologically relevant bacterial strains. We propose that pseudochelin A may have a role in shaping the microbiome or protecting the egg collars from microbiofouling.
Project description:Background: Marine phytoplankton are responsible for 50% of the CO2 that is fixed annually worldwide and contribute massively to other biogeochemical cycles in the oceans. Diatoms and coccolithophores play a significant role as the base of the marine food web and they sequester carbon due to their ability to form blooms and to biomineralise. To discover the presence and regulation of short non-coding RNAs (sRNAs) in these two important phytoplankton groups, we sequenced short RNA transcriptomes of two diatom species (Thalassiosira pseudonana, Fragilariopsis cylindrus) and validated them by Northern blots along with the coccolithophore Emiliania huxleyi. Results: Despite an exhaustive search, we did not find canonical miRNAs in diatoms. The most prominent classes of sRNAs in diatoms were repeat-associated sRNAs and tRNA-derived sRNAs. The latter were also present in E. huxleyi. tRNA-derived sRNAs in diatoms were induced under important environmental stress conditions (iron and silicate limitation, oxidative stress, alkaline pH), and they were very abundant especially in the polar diatom F. cylindrus (20.7% of all sRNAs) even under optimal growth conditions. Conclusions: This study provides first experimental evidence for the existence of short non-coding RNAs in marine microalgae. Our data suggest that canonical miRNAs are absent from diatoms. However, the group of tRNA-derived sRNAs seems to be very prominent in diatoms and coccolithophores and may be used for acclimation to environmental conditions. RNA-seq study of sRNA populations in two species of diatoms using Illumina GAII high-throughput sequencing
Project description:Background: Marine phytoplankton are responsible for 50% of the CO2 that is fixed annually worldwide and contribute massively to other biogeochemical cycles in the oceans. Diatoms and coccolithophores play a significant role as the base of the marine food web and they sequester carbon due to their ability to form blooms and to biomineralise. To discover the presence and regulation of short non-coding RNAs (sRNAs) in these two important phytoplankton groups, we sequenced short RNA transcriptomes of two diatom species (Thalassiosira pseudonana, Fragilariopsis cylindrus) and validated them by Northern blots along with the coccolithophore Emiliania huxleyi. Results: Despite an exhaustive search, we did not find canonical miRNAs in diatoms. The most prominent classes of sRNAs in diatoms were repeat-associated sRNAs and tRNA-derived sRNAs. The latter were also present in E. huxleyi. tRNA-derived sRNAs in diatoms were induced under important environmental stress conditions (iron and silicate limitation, oxidative stress, alkaline pH), and they were very abundant especially in the polar diatom F. cylindrus (20.7% of all sRNAs) even under optimal growth conditions. Conclusions: This study provides first experimental evidence for the existence of short non-coding RNAs in marine microalgae. Our data suggest that canonical miRNAs are absent from diatoms. However, the group of tRNA-derived sRNAs seems to be very prominent in diatoms and coccolithophores and may be used for acclimation to environmental conditions.
Project description:Bacteria respond to stimuli in the environment using transcriptional control, but this may not be the case for most marine bacteria having small, streamlined genomes. Candidatus Pelagibacter ubique, a cultivated representative of the SAR11 clade, which is the most abundant clade in the oceans 4, has a small, streamlined genome and possesses an unusually small number of transcriptional regulators. This observation leads to the hypothesis that transcriptional control is low in Pelagibacter and limits its response to environmental conditions. However, the extent of transcriptional control in Pelagibacter is unknown. Here we show that transcriptional control is extremely low in Pelagibacter and another oligotroph (SAR92) compared to two marine copiotrophic bacterial taxa, Polaribacter MED152 and Ruegeria pomeroyi. We found that ~0.1% of protein-encoding genes in Pelagibacter are under transcriptional control compared to >10% of genes in other marine bacteria. Regardless of the growth condition, the same genes were highly expressed while most genes were always expressed at very low levels. Quantitative RNA sequencing revealed that abundances of most Pelagibacter transcripts were <0.01 copies per cell whereas transcript abundances were 1 to 10 copies per cell in some other bacteria. Our results demonstrate that Pelagibacter can change growth without shifts in transcript levels, suggesting that transcriptional control plays a minimal role in the adaptive strategy for one of the most successful organisms in the biosphere.
Project description:Bacteria respond to stimuli in the environment using transcriptional control, but this may not be the case for most marine bacteria having small, streamlined genomes. Candidatus Pelagibacter ubique, a cultivated representative of the SAR11 clade, which is the most abundant clade in the oceans 4, has a small, streamlined genome and possesses an unusually small number of transcriptional regulators. This observation leads to the hypothesis that transcriptional control is low in Pelagibacter and limits its response to environmental conditions. However, the extent of transcriptional control in Pelagibacter is unknown. Here we show that transcriptional control is extremely low in Pelagibacter and another oligotroph (SAR92) compared to two marine copiotrophic bacterial taxa, Polaribacter MED152 and Ruegeria pomeroyi. We found that ~0.1% of protein-encoding genes in Pelagibacter are under transcriptional control compared to >10% of genes in other marine bacteria. Regardless of the growth condition, the same genes were highly expressed while most genes were always expressed at very low levels. Quantitative RNA sequencing revealed that abundances of most Pelagibacter transcripts were <0.01 copies per cell whereas transcript abundances were 1 to 10 copies per cell in some other bacteria. Our results demonstrate that Pelagibacter can change growth without shifts in transcript levels, suggesting that transcriptional control plays a minimal role in the adaptive strategy for one of the most successful organisms in the biosphere. Bacteria were grown in batch culture and sampled twice during the initial, rapid phase of exponential growth and twice during the phase of slower growth that followed.
Project description:Macroalgae contribute substantially to primary production in coastal ecosystems. Their biomass, mainly consisting of polysaccharides, is cycled into the environment by marine heterotrophic bacteria (MHB), using largely uncharacterized mechanisms. In Zobellia galactanivorans, we discovered and characterized the complete catabolic pathway for carrageenans, major cell wall polysaccharides of red macroalgae, providing a model system for carrageenan utilization by MHB. We further demonstrate that carrageenan catabolism relies on a multifaceted carrageenan-induced regulon, including a non-canonical polysaccharide utilization locus (PUL) and several distal genes. The genetic structure of the carrageenan utilization system is well conserved in marine Bacteroidetes, but modified in other MHB phyla. The core system is completed by additional functions which can be assumed by non-orthologous genes in different species. This complex genetic structure is due to multiple evolutionary events including gene duplications and horizontal gene transfers. These results allow for an extension on the definition of bacterial PUL-mediated polysaccharide digestion.
Project description:Tyrosinase, an important oxidase involved in the primary immune response in humans, can sometimes become problematic as it can catalyze undesirable oxidation reactions. Therefore, for decades there has been a strong pharmaceutical interest in the discovery of novel inhibitors of this enzyme. Recent studies have also indicated that tyrosinase inhibitors can potentially be used in the treatment of melanoma cancer. Over the years, many new tyrosinase inhibitors have been discovered from various natural sources; however, marine natural products (MNPs) have contributed only a small number of promising candidates. Therefore, in this study we focused on the discovery of new MNP tyrosinase inhibitors of marine cyanobacterial and algal origins. A colorimetric tyrosinase inhibitory assay was used to screen over 4,500 marine extracts against mushroom tyrosinase (A. bisporus). Our results revealed that scytonemin monomer (ScyM), a pure compound from our compound library and also the monomeric last-step precursor in the biosynthesis of the well-known cyanobacterial sunscreen pigment "scytonemin," consistently showed the highest tyrosinase inhibitory score. Determination of the half maximal inhibitory concentration (IC50) further indicated that ScyM is more potent than the commonly used commercial inhibitor standard "kojic acid" (KA; IC50 of ScyM: 4.90 μM vs. IC50 of KA: 11.31 μM). After a scaled-up chemical synthesis of ScyM as well as its O-methyl analog (ScyM-OMe), we conducted a series of follow-up studies on their structures, inhibitory properties, and mode of inhibition. Our results supported ScyM as the second case ever of a novel tyrosinase inhibitory compound based on a marine cyanobacterial natural product. The excellent in vitro performance of ScyM makes it a promising candidate for applications such as a skin-whitening agent or an adjuvant therapy for melanoma cancer treatment.