Project description:BackgroundIt is essential to identify the chemical components for the quality control methods establishment of Chinese Classical Formula (CCF). However, CCF are complex mixture of several herbal medicines with huge number of different compounds and they are not equal to the combination of chemical components from each herb due to particular formula ratio and preparation techniques. Therefore, it is time-consuming to identify compounds in a CCF by analyzing the LC-MS/MS data one by one, especially for unknown components.MethodsAn ultra-high pressure liquid chromatography-linear ion trap-orbitrap high resolution mass spectrometry (UHPLC-LTQ-Orbitrap-MS/MS) approach was developed to comprehensively profile and characterize multi-components in CCF with Erdong decoction composed of eight herbal medicines as an example. Then the MS data of Erdong decoction was analyzed by MS/MS-based molecular networking and these compounds with similar structures were connected to each other into a cluster in the network map. Then the unknown compounds connected to known compounds in a cluster of the network map were identified due to their similar structures.ResultsBased on the clusters of the molecular networking, 113 compounds were rapidly tentative identification from Erdong decoction for the first time in the negative mode, which including steroidal saponins, triterpenoid saponins, flavonoid O-glycosides and flavonoid C-glycosides. In addition, 10 alkaloids were tentatively identified in the positive mode from Nelumbinis folium by comparison with literatures.ConclusionMS/MS-based molecular networking technique is very useful for the rapid identification of components in CCF. In Erdong decoction, this method was very suitable for the identification of major steroidal saponins, triterpenoid saponins, and flavonoid C-glycosides.
Project description:Traditional Chinese medicine (TCM) in-hospital preparations are approved for use only in the hospital where they are prepared. They are widely used in China because of their efficacy and affordable price. However, few researchers focused on their quality controls and treatment mechanisms, for which a key consideration is the elucidation of their chemical composition. Runyan mixture (RY) is a typical in-hospital TCM preparation comprising a formula of eight herbal drugs used for adjuvant therapy of upper respiratory tract infections. The chemical constituents of formulated RY have not yet been elucidated. In the present work, RY was analyzed by a ultrahigh-performance liquid chromatography system equipped with high-resolution orbitrap mass spectrometry (MS). The acquired MS data were processed by MZmine and a feature-based molecular networking was constructed to identify the metabolites of RY. 165 compounds including 41 flavonoid O-glycosides, 11 flavonoid C-glycosides, 18 quinic acids, 54 coumaric acids, 11 iridoids, and 30 others were identified. This study demonstrates an efficient method to identify compounds in complex herbal drug mixtures using high-resolution MS and molecular networking tools which will support future research into quality controls and treatment mechanisms of in-hospital TCM preparations.
Project description:Ventilago denticulata is an herbal medicine for the treatment of wound infection; therefore this plant may rich in antibacterial agents. UHPLC-ESI-QTOF-MS/MS-Based molecular networking guided isolation and dereplication led to the identification of antibacterial and antifungal agents in V. denticulata. Nine antimicrobial agents in V. denticulata were isolated and characterized; they are divided into four groups including (I) flavonoid glycosides, rhamnazin 3-rhamninoside (7), catharticin or rhamnocitrin 3-rhamninoside (8), xanthorhamnin B or rhamnetin 3-rhamninoside (9), kaempferol 3-rhamninoside (10) and flavovilloside or quercetin 3-rhamninoside (11), (II) benzisochromanquinone, ventilatones B (12) and A (15), (III) a naphthopyrone ventilatone C (16) and (IV) a triterpene lupeol (13). Among the isolated compounds, ventilatone C (16) was a new compound. Moreover, kaempferol, chrysoeriol, isopimpinellin, rhamnetin, luteolin, emodin, rhamnocitrin, ventilagodenin A, rhamnazin and mukurozidiol, were tentatively identified as antimicrobial compounds in extracts of V. denticulata by a dereplication method. MS fragmentation of rhamnose-containing compounds gave an oxonium ion, C6H9O3+ at m/z 129, while that of galactose-containing glycosides provided the fragment ion at m/z 163 of C6H11O5+. These fragment ions may be used to confirm the presence of rhamnose or galactose in mass spectrometry-based analysis of natural glycosides or oligosaccharide attached to biomolecules, that is, glycoproteins.
Project description:Acute kidney injury (AKI) remains a significant clinical problem through its diverse etiologies, the challenges of robust measurements of injury and recovery, and its progression to chronic kidney disease (CKD). Bridging the gap in our knowledge of this disorder requires bringing together not only the technical resources for research but also the investigators currently endeavoring to expand our knowledge and those who might bring novel ideas and expertise to this important challenge. The University of Alabama at Birmingham-University of California-San Diego O'Brien Center for Acute Kidney Injury Research brings together technical expertise and programmatic and educational efforts to advance our knowledge in these diverse issues and the required infrastructure to develop areas of novel exploration. Since its inception in 2008, this O'Brien Center has grown its impact by providing state-of-the-art resources in clinical and preclinical modeling of AKI, a bioanalytical core that facilitates measurement of critical biomarkers, including serum creatinine via LC-MS/MS among others, and a biostatistical resource that assists from design to analysis. Through these core resources and with additional educational efforts, our center has grown its investigator base to include >200 members from 51 institutions. Importantly, this center has translated its pilot and catalyst funding program with a $37 return per dollar invested. Over 500 publications have resulted from the support provided with a relative citation ratio of 2.18 ± 0.12 (iCite). Through its efforts, this disease-centric O'Brien Center is providing the infrastructure and focus to help the development of the next generation of researchers in the basic and clinical science of AKI. This center creates the promise of the application at the bedside of the advances in AKI made by current and future investigators.