Proteomics

Dataset Information

0

Proteomes of Spirodela polyhriza under different trophic modes


ABSTRACT: The greater duckweed (Spirodela polyrhiza 7498) exhibits trophic diversity (photoautotrophic, heterotrophic, photoheterotrophic, and mixotrophic growth) depending on the availability of exogenous organic carbon sources and light. Here, we show that the ability to transition between various trophic growth conditions is an advantageous trait, providing great phenotypic plasticity and metabolic flexibility in S. polyrhiza 7498. By comparing S. polyrhiza 7498 growth characteristics, metabolic acclimation, and cellular ultrastructure across these trophic modes, we show that mixotrophy decreases photosynthetic performance and relieves the CO2 limitation of photosynthesis by enhancing the CO2 supply through the active respiration pathway. Proteomic and metabolomic analyses corroborated that S. polyrhiza 7498 increases its intracellular CO2 and decreases reactive oxygen species undermixotrophic and heterotrophic conditions, which substantially suppressed the wasteful photorespiration and oxidative-damage pathways. As a consequence, mixotrophy resulted in a higher biomass yield than the sum of photoautotrophy and heterotrophy.Our work provides a basis for using trophic transitions in S. polyrhiza 7498 for the enhanced accumulation of value-added products.

ORGANISM(S): Spirodela Polyrhiza

SUBMITTER: Hongwei Hou  

PROVIDER: PXD040410 | iProX | Mon Feb 27 00:00:00 GMT 2023

REPOSITORIES: iProX

altmetric image

Publications

Metabolic flexibility during a trophic transition reveals the phenotypic plasticity of greater duckweed (Spirodela polyrhiza 7498).

Sun Zuoliang Z   Zhao Xuyao X   Li Gaojie G   Yang Jingjing J   Chen Yan Y   Xia Manli M   Hwang Inhwan I   Hou Hongwei H  

The New phytologist 20230318 4


The greater duckweed (Spirodela polyrhiza 7498) exhibits trophic diversity (photoautotrophic, heterotrophic, photoheterotrophic, and mixotrophic growth) depending on the availability of exogenous organic carbon sources and light. Here, we show that the ability to transition between various trophic growth conditions is an advantageous trait, providing great phenotypic plasticity and metabolic flexibility in S. polyrhiza 7498. By comparing S. polyrhiza 7498 growth characteristics, metabolic acclim  ...[more]

Similar Datasets

| PRJNA603769 | ENA
2021-07-14 | PXD022283 | Pride
2012-08-10 | GSE33927 | GEO
2015-04-17 | E-GEOD-67971 | biostudies-arrayexpress
2022-11-10 | GSE217211 | GEO
2016-10-15 | GSE87329 | GEO
2012-08-10 | E-GEOD-33927 | biostudies-arrayexpress
2020-10-10 | GSE121054 | GEO
2020-10-10 | GSE121012 | GEO
2008-10-01 | GSE11774 | GEO