Project description:In order to more accurately discover the cause of drug resistance in tumor treatment, and to provide a new basis for precise treatment.
Therefore, based on the umbrella theory of precision medicine, we carried out this single-center, prospective, and observational study to include patients with liver metastases from colorectal cancer. By combining genome, transcriptome, and proteomic sequencing data, we established a basis for colorectal cancer liver Transfer the multi-omics data of the sample, describe the reason for the resistance of the first-line treatment, and search for new therapeutic targets.
Project description:We performed ribosome profiling which is the deep-sequencing of mRNA fragments protected by translating ribosome for two Streptomyces species through different growth phases to provide the translatome data
Project description:The genomic and proteomic analyses of Streptomyces lividans strains deficient in the major signal peptidase SipY or in the translocase complex protein SecG resulted in a set of genes being equally regulated. These genes are apparently responsible for the common deficiencies in extracellular protein production and sporulation shared by both mutant strains, constituting a cellular response to the stress caused by the potential malfunction of the translocase complex, which we have named “extracellular protein translocation stress (EPTS)”.
Project description:Two component sensor-response regulator systems (TCSs) are very common in the genomes of the Streptomyces species that have been fully sequenced to date. It has been suggested that this large number is an evolutionary response to the variable environment that Streptomyces encounter in soil. Notwithstanding this, TCSs are also more common in the sequenced genomes of other Actinomycetales when these are compared to the genomes of most other eubacteria. In this study, we have used DNA/DNA genome microarray analysis to compare fourteen Streptomyces species and one closely related genus to Streptomyces coelicolor in order to identify a core group of such systems. This core group is compared to the syntenous and non-syntenous TCSs present in the genome sequences of other Actinomycetales in order to separate the systems into those present in Actinomycetales in general, the Streptomyces specific systems and the species specific systems. Horizontal transfer does not seem to play a very important role in the evolution of the TCS complement analyzed in this study. However, cognate pairs do not necessarily seem to evolve at the same pace, which may indicate the evolutionary responses to environmental variation may be reflected differently in sequence changes within the two components of the TCSs. The overall analysis allowed subclassification of the orphan TCSs and the TCS cognate pairs and identification of possible targets for further study using gene knockouts, gene overexpression, reporter genes and yeast two hybrid analysis.
Project description:In order to define the impact of phosphate (Pi) availability on cellular metabolism the project aimed to perform a comparative analysis of the proteomes of two Streptomyces strains with different abilities to produce antibiotics, S. coelicolor and S. lividans as well as of the pptA mutant of S. lividans, grown low (1mM) and high (5mM) phosphate (Pi) availability conditions. Interestingly, in contrast to most Streptomyces species, S. coelicolor produces more antibiotics in Pi proficiency than in Pi limitation, S. lividans does not produce antibiotics in any Pi conditions and the pptA mutant produces antibiotics only in Pi limitation. This in-depth proteomic comparison of three Streptomyces strains (S. coelicolor, S. lividans wt and pptA mutant), in different growth conditions (time and Pi concentration in the medium) was performed on four biological replicates. Protein abundance changes were determined using two label-free mass spectrometry based-quantification methods: spectral count (SC) and MS1 ion intensities named XIC (for eXtracted Ion Current). Our proteomic data reveal for the first time, the impact of Pi availability on the abundance of approximately 4000 proteins of these Streptomyces strains with different abilities to produce antibiotics. The most striking feature differentiating these strains was the much higher abundance of enzymes of the respiratory chain in both phosphate conditions in S. coelicolor compared to the S. lividans strains.
Project description:We determined genes that directly or indirectly regulated by CatR (or PerR), and hydrogen peroxide regulon in Streptomyces coelicolor.
Project description:This study compared the genome of Streptomyces rimosus rimosus against that of Streptomyces coelicolor. It also compared 4 strains with changes in oxytetracycline production and derived from G7, the type strain, against G7. Keywords: Comparative genomic hybridization
Project description:We identified genome-wide binding regions of NdgR in Streptomyces coelicolor using chromatin immunoprecipitation sequencing (ChIP-seq). We constructed 6×myc-tagged NdgR strain using homologous recombination with myc-tagging vector. Analysis of the sequencing data aligned to Streptomyces coelicolor genome database (NC_003888).