Project description:Comprehensive investigation of gene expression during fruit development and ripening in European pear (Pyrus communis). Gene expression of fruit flesh development of European pear was measured from -7 to 182 days after full bloom (DAFB). 150 DAFB is harvested stage and 182 DAFB is after ripening by chilling treatment (2M-BM-0C 12 days, then 15M-BM-0C 20 days).
Project description:Low temperature storage of citrus fruits are susceptible to chilling disorder symptoms that impact fruit quality. Understanding the molecular frame underlying the cold storage process will provide a basic guidance for practical control. We used Affymetrix Citrus GeneChip to examine the transcriptional changes in cold-stored Citrus reticulata Blanco cv. ‘Ponkan’ pulp tissue for three successive months.
Project description:Tomato fruit are susceptible to postharvest chilling injury when stored at low temperature, thus result in quality deterioration and economic losses worldwide. Protein phosphorylation is an important post-translational modification, which is proven to be involved in plant cold tolerance. But the protein phosphorylation underlying cold stress responses in tomato fruit are remains poorly understood. In this study, we perform comparative phosphoproteomics and provide an overall phosphoprotein profiles in tomato fruit after postharvest cold storage and subsequent shelf-life. A total of 10260 phosphopeptides corresponding to 9640 phosphosites in 3740 phosphoproteins were identified.
Project description:Low temperature storage of citrus fruits are susceptible to chilling disorder symptoms that impact fruit quality. Understanding the molecular frame underlying the cold storage process will provide a basic guidance for practical control. We used Affymetrix Citrus GeneChip to examine the transcriptional changes in cold-stored Citrus reticulata Blanco cv. âPonkanâ pulp tissue for three successive months. Ponkan postharvest fruits were under cold storage for three successive months. The pulp tissue was used for RNA extraction and hybridization on Affymetrix Citrus Genome microarrays.
Project description:We performed whole genome re-sequencing to reveal the comprehensive genetic variation of the fruit development between kumquat (Fortunella japonica) and Clementine mandarin. Total 5,865,235 single-nucleotide polymorphisms (SNPs) and 414,447 insertion/deletion (InDels) were identified in the two citrus species. Meanwhile, a total of 640,801 SNPs and 20,733 InDels were identified based on integrative analysis of genome and transcriptome of fruit. The variation feature, genomic distribution, functional effect and other characteristics of these genetic variation were explored. Total 1,090 differentially expressed genes (DEGs) were found during fruit development process of kumquat and Clementine mandarin by RNA-sequencing. Gene Ontology revealed that these genes were involved in various molecular functional and biological processes. Meanwhile, the genetic variation of 939 DEGs and 74 multiple fruit development pathway genes from previous reported were also identified. In addition, a global survey of genes splicing events identified 24,237 specific alternative splicing (AS) events in the two citrus species and showed that intron retention is the most prevalent pattern of alternative splicing.
Project description:Aberrant glycosylation involves multifaceted pathological and pathophysiological changes in pancreatic ductal adenocarcinoma (PDAC), including but not limited to conferring tumor cells the ability to resist cell death. Ferroptosis driven by lethal lipid peroxidation provides a targetable vulnerability to PDAC. However, the crosstalk between glycosylation and ferroptosis remains unclear. Here, we identified 4F2hc, a subunit of the glutamate-cystine antiporter system Xc–, its N-glycosylation is involved in PDAC ferroptosis by N- and O-linked glycoproteomics. Knockdown of SLC3A2 (gene name of 4F2hc) or blocking the N-glycosylation of 4F2hc potentiates ferroptosis sensitization of PDAC cells by impairing the activity of system Xc– manifested by a marked decrease in intracellular glutathione. To identify which glycosyltransferases are critical for glycosylation initiation during ferroptosis execution. We collected 207 glycosyltransferase genes (GTGs) and performed parallel RNA-seq to reveal that the glycosyltransferase B3GNT3 catalyzes the glycosylation of 4F2hc, which stabilizes the 4F2hc protein as well as its interaction with xCT. Additionally, upon the combination with a ferroptosis inducer, treatment with the classical N-glycosylation inhibitor tunicamycin (TM) markedly triggered the overactivation of lipid peroxidation and enhanced the sensitivity of PDAC cells to ferroptosis. Notably, we confirmed that genetic perturbation of SLC3A2 or combination treatment with TM markedly increased ferroptosis sensitivity in the orthotopic PDAC model. Clinically, high expression of 4F2hc and B3GNT3 contributes to the progression and poor survival of PDAC patients. Collectively, our findings reveal a previously unappreciated function of N-glycosylation of 4F2hc in ferroptosis and suggest that targeting glycosylated 4F2hc can induce susceptibility to ferroptosis in PDAC.
2023-07-12 | GSE207741 | GEO
Project description:RNA-Seq of peach fruit sujected to chilling injury
Project description:Due to the broad climate adaptation of perennial trees, phenological traits (e.g. chilling requirement-CR, bloom date-BD) exhibit complex inheritance patterns. Conceptually, these are adaptive responses to abiotic stress. As production depends on traits like CR, breeders have developed varieties that are phenotypically/genotypically matched to particular geographic/temperature zones. These genotypes are ideal for study of gene networks governing these climate-critical traits. Using genetic approaches, genome-wide association analyses, functional and comparative genomics in fruit and forest trees, we identified a foundational network of genetic activity (phenylpropanoid pathway) linking winter cold stress response to control of the endodormancy-ecodormancy transition (EET) and seed stratification. Our goal is to examine during endodormancy the allelic effects of genes controlling the production of stress related metabolic intermediates that regulate seed stratification, thus linking these two cold temperature responses. Our objective is to use a transcriptome sequencing approach to characterize genotypic effects on the phenylpropanoid gene network transcriptome during endodormancy and the EET. These adaptive genes and gene networks will be targets for knowledge based breeding strategies of fruit and forest trees to sustain and improve these resources to meet the challenges of rapid environmental change
Project description:To excavate the underlying molecular regulation network that during citrus fruit development and ripening, we used RNA-seq to generate high-resolution profiles of global gene expression in four different fruit tissues at six development stages. Using weighted gene coexpression network analysis, we identified modules of coexpressed genes and hub genes of tissue-specific networks. In general, this study was aimed to uncover the new molecular insights into citrus fruit development and ripening, and to reveal the specific nonclimacteric characteristics of citrus fruit.