Project description:Time and dose related expression profiles of rat right heart tissue in microsphere bead model for Pulmonary embolism Experiment Overall Design: Rat right tissues of the Vehicle(no beads- control), low dose and high dose from rat bead model for Pulmonary Embolism were collected after 2, 6 and 18 hour time points. The extracted RNA was hybridized to Affymetrix Rat 230-2.0 microarrays to look for the dose and/or time related transcriptional changes associated with experimental Pulmonary Embolism.
Project description:Time and dose related expression profiles of rat right heart tissue in microsphere bead model for Pulmonary embolism Keywords: Time course and dose response in experimental PE
Project description:Adverse effects of statins include skeletal muscle toxicity; Type II glycolytic fibers are more senstive to statin damage; exercise exacerbates statin muscle degeneration. We used a well-characterized rat model of statin-induced muscle degeneration, at which 1.0 mg/kg/day (high dose) cerivastatin produces mild to moderate histological degeneration. We used microarrays to detail the global programme of gene expression underlying cerivastatin effects on rat gastrocnemius and soleus muscles, as well as the effect of cerivastatin combined with treadmill exercise. We identified distinct classes of up- and down-regulated genes during this process. Keywords: dose response; exercise effect
Project description:Introduction: Immune checkpoint inhibitors(ICIs) targeting programmed cell death protein 1 (PD1) confer significant survival benefits to patients with non-small cell lung cancer (NSCLC). However, there remains a substantial unmet need to identify therapeutic approaches to overcome resistance and provide benefits to these patients. High-dose ascorbic acid (AA) acts synergistically with many standard anticancer treatments. However, little is known about the effect of high-dose AA on improving the efficacy of anti-PD1 inhibitors in NSCLC. This study aimed to elucidate the effects of high-dose AA on anti-PD1 immunotherapy in NSCLC. Methods: The combined effects of high-dose AA and anti-PD1 were investigated using a coculture model of H460 cells and CD8+ T cells and an LLC1 lung cancer syngeneic mouse model. To investigate the molecular mechanism, tumor tissues from mice were analyzed by comprehensive proteomic profiling using nano-LC-ESI-MS/MS. Results: Pretreatment with a high dose of AA led to enhanced the sensitivity to the cytotoxicity of CD8+ T cells derived from healthy donor for H460 cells. Additionally, the combination of anti-PD1 and high-dose AA significantly increased CD8+ T cell cytotoxicity in H460 cells. The combination of anti-PD1 and high-dose AA showed dramatic antitumor effects in a syngeneic mouse model of lung cancer by significantly reducing tumor growth and increasing CD8+ T cell-dependent cytotoxicity and macrophage activity. Comprehensive protein analysis confirmed that high-dose AA in anti-PD1-treated tumor tissues enhanced the antitumor effects by regulating various immune-related mechanisms, including the B cell and T cell receptor signaling pathways, Fc gamma R-mediated phagocytosis, and natural killer (NK) cell-mediated cytotoxicity. Discussion: Our results suggest that high-dose AA may be a promising adjuvant to potentiate the efficacy of anti-PD1 immunotherapy.