Project description:Quantitative proteomic analysis of Myc-induced apoptosis in serum-deprived Rat1_Myc fibroblasts. Mitochondrial, chromatin, and soluble fractions analyzed. Original peptide data contained in Supplementary files. Keywords: proteomic, apoptosis, cell fractions
Project description:Therapeutic neo-vasculogenesis in vivo can be achieved by the co-transplantation of human endothelial colony-forming progenitor cells (ECFCs) with mesenchymal stem/progenitor cells (MSPCs).The underlying mechanism is not completely understood thus hampering the development of novel stem cell therapies.We hypothesized that proteomic profiling could be used to retrieve the in vivo signaling signature during the initial phase of human neo-vasculogenesis. ECFCs and MSPCs were therefore either transplanted alone or co-transplanted subcutaneously into immune deficient mice. Early cell signaling, occurring within the first 24 hours in vivo, was analyzed using antibody microarray proteomic profiling.Vessel formation and persistence were verified in parallel transplants for up to 24 weeks. Proteomic analysis revealed significant alteration of regulatory components including caspases, calcium/calmodulin-dependent protein kinase, DNA protein kinase,human ErbB2 receptor-tyrosine kinase as well as mitogen-activated protein kinases.Therapeutic candidate caspase-4 was selected from array results for targeting vascular network formation in vitro as well as modulating therapeutic vasculogenesis in vivo. As a proof-of-principle, caspase-4 and general caspase-blocking led to diminished endothelial network formation in vitro and significantly decreased vasculogenesis in vivo. Proteomic profiling ex vivo thus unraveled a signaling signature which can be targeted to modulate neo-vasculogenesis in vivo.
Project description:We found the bone marrow stromal-derived neural progenitor cells secretome have the neural protection effect. Proteomic analysis was performed nn order to analyze the protection factor in the secretome. Keywords: Neural protection, secretome
Project description:Quantitative Proteomic and Transcriptomic Analysis Reveals Post-Transcriptional Regulation of Mitochondrial Biogenesis during Erythropoiesis
Project description:Spinach (Spinacia oleracea L.) is an economically important and globally consumed popular leafy vegetable that is heat-sensitive. Heat stress caused by global climate change is one of the primary deleterious elements limiting spinach production worldwide. Little work has been done to explore the heat-responsive mechanisms of spinach under high temperature-induced stress. In the present study, we used iTRAQ-based proteomic and transcriptomic approaches to investigate physiological, metabolic, and proteomic responses of spinach in response to day / night temperature of 35°C / 25°C compared to 20°C / 15°C for 4 days. A total of 3,543 differentially expressed genes (DEGs) were detected using transcriptome sequencing, of which 2,086 DEGs were downregulated and 1,457 were upregulated. The DEGs were mainly involved in superoxide dismutase activity, catalase, and peroxidase activity. A total of 3,246 differentially abundant proteins were detected using iTAQ-based quantitative proteomic approach, from which 567 differentially expressed proteins (DEPs) (277 upregulated and 290 downregulated) were identified. DEPs were mainly assigned to pathways related to metabolism, signal transduction, protein degradation, defense, and antioxidant. Four genes - superoxide dismutase (SOD, LOC110788339), catalase (CAT, LOC110790286), peroxidase (POD, LOC110775253), and heat shock protein (HSP, LOC110799288) - were validated using quantitative real-time PCR (qRT-PCR) to verify the proteomic and transcriptomic analyses, showing different transcriptional and translational expression levels. The findings of this study provide a fundamental understanding of the metabolic pathways and biological processes that control adaptation to heat stress in spinach, and provide novel insight into the development of heat-tolerant spinach.
Project description:Desmoplastic small round cell tumor (DSRCT) is an aggressive malignancy that occurs predominantly in young adult males and is characterized by abdominopelvic sarcomatosis exhibiting multi-lineage cellular nests of epithelial, muscular, mesenchymal, and neural differentiation admixed with desmoplastic stroma. Prior to the recognition of the disease as a distinct clinical entity, DSRCT was invariably misclassified as poorly differentiated atypical cancer of the testes, ovary, mesentery, or gastrointestinal tract, and the chemotherapies used for those malignancies elicited poor clinical response. As previously reported, a tectonic shift in the treatment of these patients occurred after researchers made two astute observations: 1) DSRCT microscopically resembles other small round “blue cell” sarcoma subtypes (e.g., ES, rhabdomyosarcoma, synovial sarcoma), and 2) DSRCT and ES have the same N-terminal EWSR1 fusion partner. Proteomic analysis using a reverse-phase protein lysate array (RPPA) was used to elucidate biomarkers that distinguish DSRCT from adjacent normal tissue and Ewing sarcoma. This proteomic analysis revealed novel proteins, such as the androgen receptor and Syk, that may be susceptible to drug targeting, as well as oncogenic pathways like Akt-PI3K that are highly expressed in DSRCT.