Project description:This SuperSeries is composed of the following subset Series:; GSE8174: Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression - Seedling data; GSE8176: Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression - Immature ear data; GSE8179: Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression - Embryo data Experiment Overall Design: Refer to individual Series
Project description:Analysis of whole genome bisulfite data for 3 maize inbred lines (B73, PH207, and W22) with data aligned to the corresponding genome for determination of methylation level (CG, CHG, and CHH) across 100bp windows of the maize genome.
Project description:High temperature is increasingly becoming one of the prominent environmental factors affecting the growth and development of maize (Zea mays L.). Therefore, it is critical to identify key genes and pathways related to heat stress (HS) tolerance in maize. Here, we identified a heat-resistant (Z58D) and heat-sensitive (AF171) maize inbred lines at seedling stage. Transcriptomic analysis identified 3,006 differentially expressed genes (DEGs) in AF171 and 4,273 DEGs in Z58D under HS treatments, respectively. Subsequently, GO enrichment analysis showed that shared upregulated genes in AF171 and Z58D involved in response to HS, protein folding, abiotic and temperature stimulus pathway. Moreover, the comparison between the two inbred lines under HS showed that response to heat and response to temperature stimulus significantly overrepresented for the 1,234 upregulated genes. Furthermore, commonly upregulated genes in Z58D and AF171 had higher expression level in Z58D than AF171. In addition, maize inbred CIMBL55 had been verified to be more tolerant than B73 and commonly upregulated genes had higher expression level in CIMBL55 than B73 under HS. The consistent results indicated that heat-resistant inbred lines may coordinate the remarkable expression of genes in order to recover from HS. Additionally, 35 DEGs were conserved among 5 inbred lines by a comparative transcriptomic analysis. Most of them were more pronounced in Z58D than AF171 at expression level. Those candidate genes may confer thermotolerance in maize.
Project description:We use DNA affinity purification-sequencing (DAP-seq) to map transcription factor binding events for 200 maize TFs belonging to 30 distinct families and heterodimer pairs in two distinct inbred lines historically used for maize hybrid plant production
Project description:Head smut of maize, which is caused by the Sporisorium reilianum f. sp. Zeae (Kühn), has been a serious disease in maize. In order to find head smut resistant candidate genes, microarrays were used to monitor the gene expression profiles between disease resistant near isogenic lines (NIL) L282 and L43, highly resistant inbred line Q319 and highly susceptible inbred line Huangzao4 after 0 to7 days post inoculation of S.reiliana by artificial inoculation method.
Project description:Microarray analysis of gene expression patterns in immature ear, seedling, and embryo tissues from the maize inbred lines B73 and Mo17 identified numerous genes with variable expression. Some genes had detectable expression in only one of the two inbreds; most of these genes were detected in the genomic DNA of both inbreds, indicating that the expression differences are likely caused by differential regulation rather than by differences in gene content. Gene expression was also monitored in the reciprocal F1 hybrids B73xMo17 and Mo17xB73. The reciprocal F1 hybrid lines did not display parental effects on gene expression levels. Approximately 80% of the differentially expressed genes displayed additive expression patterns in the hybrids relative to the inbred parents. The approximately 20% of genes that display nonadditive expression patterns tend to be expressed at levels within the parental range, with minimal evidence for novel expression levels greater than the high parent or less than the low parent. Analysis of allele-specific expression patterns in the hybrid suggested that intraspecific variation in gene expression levels is largely attributable to cis-regulatory variation in maize. Collectively, our data suggest that allelic cis-regulatory variation between B73 and Mo17 dictates maintenance of inbred allelic expression levels in the F1 hybrid, resulting in additive expression patterns. Keywords: genotype comparison
Project description:Microarray analysis of gene expression patterns in immature ear, seedling, and embryo tissues from the maize inbred lines B73 and Mo17 identified numerous genes with variable expression. Some genes had detectable expression in only one of the two inbreds; most of these genes were detected in the genomic DNA of both inbreds, indicating that the expression differences are likely caused by differential regulation rather than by differences in gene content. Gene expression was also monitored in the reciprocal F1 hybrids B73xMo17 and Mo17xB73. The reciprocal F1 hybrid lines did not display parental effects on gene expression levels. Approximately 80% of the differentially expressed genes displayed additive expression patterns in the hybrids relative to the inbred parents. The approximately 20% of genes that display nonadditive expression patterns tend to be expressed at levels within the parental range, with minimal evidence for novel expression levels greater than the high parent or less than the low parent. Analysis of allele-specific expression patterns in the hybrid suggested that intraspecific variation in gene expression levels is largely attributable to cis-regulatory variation in maize. Collectively, our data suggest that allelic cis-regulatory variation between B73 and Mo17 dictates maintenance of inbred allelic expression levels in the F1 hybrid, resulting in additive expression patterns. Keywords: genotype comparison