Project description:In present study, it was found that the co-culture of Wickerhamomyces anomalus Y-5 and L. plantarum RX-8 could enhance bacteriocin production. To analyze the interaction between W. anomalus Y-5 and L. plantarum RX-8, a quantitative proteomic approach was used to analyze and compare the proteome in L. plantarum RX-8 and W. anomalus Y-5 under mono-culture and co-culture. In total, 339 differently expressed proteins (DEPs) were screened in comparison of L. plantarum RX-8 under mono-culture and co-culture, 645 proteins of W. anomalus Y-5 changed in mono-culture and co-culture. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that DEPs participated in various metabolic pathways such as PTS system, glycolysis, galactose metabolism, glutamate, aspartate, arginine and cysteine metabolism etc. These pathways were related to inducing mechanism on improving bacteriocin production by co-culture. Quantitative proteomic analysis-based strategies can therefore provide further evidence for new regulated targets to improve the production of bacteriocins.
Project description:Faithful embryogenesis requires the precise coordination between embryonic and extraembryonic tissues. Although embryonic and extraembryonic stem cells have been derived from several mammalian species including humans, they are cultured in different conditions, which makes it difficult to study their intercommunication. Here, by simultaneously activating FGF, TGF-β and WNT pathways, we derived stable pluripotent stem cells (PSCs), trophoblast stem cells (TSCs) and extraembryonic endoderm stem cells (XENs) from mouse blastocysts under the same condition (FTW). Co-culture of PSCs and XENs in the same environment uncovered, among other interactions, a previously unrecognized control of proliferation of epiblast cells by extraembryonic endoderm cells. FTW condition also supported de novo derivation of XENs from cynomolgus monkey and human blastocysts, and enabled setting up co-culture of human iPSCs and XENs. Crosspieces comparison revealed conserved and divergent processes and genes regulating XENs and ligand-receptor interactions between pluripotent and extraembryonic endoderm cells. Our study establishes a unique stem cell co-culture strategy to examine embryonic and extraembryonic lineage crosstalk during early mammalian development, and opens the door for developing more faithful in vitro models and differentiation protocols.
Project description:Faithful embryogenesis requires the precise coordination between embryonic and extraembryonic tissues. Although embryonic and extraembryonic stem cells have been derived from several mammalian species including humans, they are cultured in different conditions, which makes it difficult to study their intercommunication. Here, by simultaneously activating FGF, TGF-β and WNT pathways, we derived stable pluripotent stem cells (PSCs), trophoblast stem cells (TSCs) and extraembryonic endoderm stem cells (XENs) from mouse blastocysts under the same condition (FTW). Co-culture of PSCs and XENs in the same environment uncovered, among other interactions, a previously unrecognized control of proliferation of epiblast cells by extraembryonic endoderm cells. FTW condition also supported de novo derivation of XENs from cynomolgus monkey and human blastocysts, and enabled setting up co-culture of human iPSCs and XENs. Crosspieces comparison revealed conserved and divergent processes and genes regulating XENs and ligand-receptor interactions between pluripotent and extraembryonic endoderm cells. Our study establishes a unique stem cell co-culture strategy to examine embryonic and extraembryonic lineage crosstalk during early mammalian development, and opens the door for developing more faithful in vitro models and differentiation protocols.
Project description:Spaceflight analogue culture enhances the host-pathogen interaction between Salmonella and a 3-D biomimetic intestinal co-culture model
Project description:Compared two hybrid mouse embryonic stem cell lines (that contain the same nuclear background, but different mtDNA content) in separate and co-culture conditions. We investigated the genes differentially expressed between these two cell lines in separate and co-culture as well as the genes that change in each cell line between separate and co-culture conditions. This experiment was done in pluripotency maintenance conditions.