Project description:Seed germination is a complicated physiological process, during which structures of mitochondria and plastids are recovered, and metabolisms are re-activated (Han and Yang, 2015). It has been shown that metabolism reactivation is very important for rice germination (He et al., 2011b;Han et al., 2014a). It is still unknown if protein acetylation involved in and regulate these metabolisms during rice seed germination. To answer this question, we globally profiled the acetylome in rice embryos from the germinating seeds. A number of acetylated enzymes were identified. The results provide more information about the metabolism regulation in germinating seeds.
Project description:Organisms need to assess their nutritional state and adapt their digestive capacity to the demands for various nutrients. Modulation of digestive enzyme production represents a rational step to regulate nutriment uptake. However, the role of digestion in nutrient homeostasis has been largely neglected. In this study, we analyzed the mechanism underlying glucose repression of digestive enzymes in the adult Drosophila midgut. We demonstrate that glucose represses the expression of many carbohydrases and lipases. Our data reveal that the consumption of nutritious sugars stimulates the secretion of the transforming growth factor β (TGF-β) ligand, Dawdle, from the fat body. Dawdle then acts via circulation to activate TGF-β/Activin signaling in the midgut, culminating in the repression of digestive enzymes that are highly expressed during starvation. Thus, our study not only identifies a mechanism that couples sugar sensing with digestive enzyme expression but points to an important role of TGF-β/Activin signaling in sugar metabolism.
Project description:Spiders have distinct capture prey behaviors selected along Araneae´s evolutive history, but mainly based on the use of venom for prey paralysis. Uloboridae spiders lost the venom glands secondarily in evolution. Due to that they extensively wrap prey with silk to paralyze and begin digestion. During the extra-oral digestion, the digestive fluid very efficiently performs the liquefaction of both the prey and the AcSp2 spidroins from the web fibers. Despite the efficiency of this process, the cocktail of enzymes involved in digestion in Uloboridae spiders is unknown. In this study, we evaluated the protein content in the midgut of Uloborus sp. using enzymatic, proteomic, and phylogenetic analysis approaches. Hydrolases as peptidases (endo and exopeptidases: cysteine, serine and metallopeptidases), carbohydrases (alpha-amylase, chitinase, alpha-mannosidase), and lipases were biochemically assayed; 50 proteins, annotated as enzymes, structural proteins, and toxins, were identified. This is the first characterization of the molecules involved in the digestive process and the midgut protein content of a nonvenomous spider.
Project description:The main objective of this study was to analyze the general midgut transcript profile of Schiustocerca gregaria as well as changes in midgut gene expression during different stages of feeding. We compared three different time points of the digestive process: no active digestion (24 h after feeding), the initial stages of feeding (10 min after feeding) and active digestion in the midgut (2 h after feeding).
Project description:Most plant cells retain the capacity to differentiate into all the other cell and organ types that constitute a plant. However, genome-wide transcriptional activities underlying the process of cell differentiation are poorly understood, especially in monocot plants. Here we used a rice (Oryza sativa) cell culture system to generate somatic embryos, which were further induced into shoots and roots. The global transcriptional reorganization during the development of somatic embryos, shoots, and roots from cultured cells was studied using a rice whole genome microarray and verified by RNA blotting analysis of representative genes. Overall, only 1-3% of expressed genes were differentially regulated during each organogenesis process at the examined time point. Also metabolic pathways were minimally regulated. Thus the genes that dictating organ formation should be relatively small in number. Comparison of these three transcriptomes revealed little overlap during these three organogenesis processes. These results indicate that each organogenesis involves specific reorganization of genome expression. Keywords: transcriptome
Project description:Copy number variations (CNVs) can create new genes, change gene dosage, reshape gene structures, and modify elements regulating gene expression. As with all types of genetic variation, CNVs may influence phenotypic variation and gene expression. CNVs are thus considered major sources of genetic variation. Little is known, however, about their contribution to genetic variation in rice. To detect CNVs, we used a set of NimbleGen whole-genome comparative genomic hybridization arrays containing 715,851 oligonucleotide probes with a median probe spacing of 500 bp. We compiled a high-resolution map of CNVs in the rice genome, showing 641 CNVs between the genomes of the rice cultivars ‘Nipponbare’ (from O. sativa ssp. japonica) and ‘Guang-lu-ai 4’ (from O. sativa ssp. indica). These CNVs contain some known genes. They are linked to variation among rice varieties, and are likely to contribute to subspecific characteristics.
Project description:During an incompatible or compatible interaction between rice (Oryza sativa) and the Asian rice gall midge (Orseolia oryzae), a lot of genetic reprogamming occurs in the plant host We used microarray to know the changes occuring in the resistant host (indica rice variety RP2068-18-3-5) when challenged by avirulent biotype of gall midge (GMB 1). During this incompatible interaction the resistance in the host is manifested by a hypersenstive response. Using microarray data, we identified distinct classes of up- and down-regulated genes during this process.
Project description:affy_rice_2011_03 - affy_compartimentation_rice_albumen_embryon - During germination, the rice seed goes from a dry quiescent state to an active metabolism. As with all cereals, the rice seed is highly differentiated between the embryo (that will give rise to the future plantlet) and the endosperm (that contains the seed storage compounds and that will degenerate). The molecular mechanisms operating in the rice seed embryo have begun to be described. Yet, very few studies have focused specifically on the endosperm during the germination process. In particular, the endosperm is mostly addressed with regards to its storage proteins but we have detected a large protein diversity by two-dimensional electrophoresis. Similarly, the endosperm is rich in total RNA which suggest that gene expression coming from seed maturation could play a role during the germination process. In this context, we want to compare the transcriptome of the embryo and the endosperm during rice seed germination. -We germinate rice seeds of the first sequenced rice cultivar i.e. Nipponbare during 0, 4, 8, 12, 16 and 24h of imbibition in sterile distilled water. Germination occurs under constant air bubbling, in the dark at 30°C. These rice seeds are then manually dissected into embryo and endosperm fractions. -The embryo-derived samples are abbreviated in “E” while the endosperm samples are abbreviated “A”. The germination time-point is indicated after the letter (e.g. E8 for embryo samples harvested after 8 hours of germination). Finally, the biological repetition number is indicated before the letter and the time digit (e.g. 1-E8 for an embryo sample from the first repetition at 8 hours of imbibition).
Project description:Background and study aims
Colorectal cancer (CRC) is one of the most commoncancers among humans worldwide. Recent studies demonstrated that the composition of the bacterial community in the human gut, as well as inflammation occurring in the gut, are some of the factors that modify the risk of an individual to develop CRC. The human gut is home to more than 1000 bacterial species, including health-promoting species and disease-causing species.
The consumption of rice bran, a by-product of rice milling, was previously shown to positively modify bacterial composition in the gut among healthy adults. The protective effect of a long-term rice bran consumption against CRC among individuals known to have higher risk of CRC, such as older individuals who are regular smokers and having a family history of CRC, needs to be established.
This study aims to investigate whether the implementation of a 24-week dietary programme involving rice bran consumption among adults at high risk of CRC is feasible, and whether it has any effect in inducing a health-promoting modification of the bacterial community, as well as a reduction of inflammation, in the gut of these individuals.
Who can participate?
Chinese adults of either gender, who are aged 50 or above and are categorised to be in the high risk CRC group by the Asian-Pacific Colorectal Screening tool, in which classification is based on age, smoking status and family history of CRC.
What does the study involve?
After the recruited subjects were screened for eligibility of study participation and written informed consent had been obtained from them, they were randomly assigned into either Group A or Group B. Participants in Group A were given packets of rice bran and were asked to consume 30 grams of the rice bran at 24-hour intervals for 24 weeks. Participants in Group B were given packets of rice powder that has similar appearance and colour as the rice bran, and were asked to consume 30 grams of the rice powder, also at 24-hour intervals for 24 weeks. All participants were asked to provide a stool sample and blood sample at various time points during the study, namely just before rice bran consumption, as well as 6 weeks, 12 weeks and 24 weeks after the start of rice bran consumption. Laboratory tests were conducted on these samples. All participants were also instructed to complete a log book, detailing the date and time of rice bran or rice powder intake each day, and the amount consumed. The participants also completed a faecal diary where they documented the frequency of egestion, and the shape and amount of stool egested each day, as well as the occurrence of any abdominal discomfort or pain.