Project description:Diachasmimorpha longicaudata parasitoid wasps carry a symbiotic poxvirus, known as DlEPV, within the female wasp venom gland. We sequenced RNA from venom gland tissue to identify DlEPV orthologs for 3 conserved poxvirus core genes. The DlEPV ORFs identified from this transcriptome were used to design primers for downstream RT-qPCR analysis and RNAi knockdown experiments.
Project description:Both single cell and bulk RNA sequencing was performed on expanding or differentiating snake venom gland organoids (from Aspidelaps Lubricus Cowlesi and Naja Nivea), or tissue (Aspidelaps Lubricus Cowlesi). Bulk RNA sequencing from the snake venom gland, liver and pancreas was performed to construct a de novo transcriptome using Trinity.
Project description:Background The generalist dipteran pupal parasitoid Nasonia vitripennis injects 79 venom peptides into the host before egg laying. This venom induces several important changes in the host, including developmental arrest, immunosuppression, and alterations to normal metabolism. It is hoped that diverse and potent bioactivities of N. vitripennis venom provide an opportunity for the design of novel acting drugs. However, currently very little is known about the individual functions of N. vitripennis venom peptides and less than half can be bioinformatically annotated. The paucity of annotation information complicates the design of studies that seek to better understand the potential mechanisms underlying the envenomation response. Although the RNA interference system of N. vitripennis provides an opportunity to functionally characterise venom encoding genes, with 79 candidates this represents a daunting task. For this reason we were interested in determining the expression levels of venom encoding genes in the venom gland, such that this information could be used to rank candidate venoms. To do this we carried out deep sequencing of the transcriptome of the venom gland and neighbouring ovary tissue and used RNA-seq to measure expression from the 79 venom encoding genes. The generation of a specific venom gland transcriptome dataset also provides further opportunities to investigate novel features of this highly specialised organ. Results High throughput sequencing and RNA-seq revealed that the highest expressed venom encoding gene in the venom gland was a serine protease called Nasvi2EG007167, which has previously been implicated in the apoptotic activity of N. vitripennis venom. As expected the RNA-seq confirmed that the N. vitripennis venom encoding genes are almost exclusively expressed in the venom gland relative to the neighbouring ovary tissue. Novel peptides appear to perform key roles in N. vitripennis venom function as only four of the highest 15 expressed venom encoding genes are bioinformatically annotationed. The high throughput sequencing data also provided evidence for the existence of an additional 471 novel genes in the Nasonia genome that are expressed in the venom gland and ovary. Finally, metagenomic analysis of venom gland transcripts identified viral transcripts that may play an important part in the N. vitripennis venom function. Conclusions The expression level information provided here for the 79 venom encoding genes provides an unbiased dataset that can be used by the N. vitripennis community to identify high value candidates for further functional characterisation. These candidates represent bioactive peptides that have value in drug development pipelines.
Project description:This data set is made up of 4 experiments (batches) analysing chondrocytes from healthy and diseased knees in 12 patients with osteoarthritis. There are 6 samples (from 3 patients) for each batch, where diseased and control samples were extracted from each patient and compared within patient. The batches were necessary due to the maximum sample capacity (6) of the mass spectrometer. The raw data files were deposited at EBI PRIDE database under accession number PXD002014 ( http://www.ebi.ac.uk/pride/archive/projects/PXD002014 ). This ArrayExpress record contains sample meta-data and processed data in the form of ratios and the log2 fold changes. The ratios were calculated for each patient as diseased vs control (the reference). Please note that one patient (number 52) was excluded from the fold change analysis as no proteins showed any significant change which suggests the samples were not correct or something went wrong with them. There is also the median and standard deviation across the patients.
Project description:Agelena koreana is indigenous spider in South Korea that lives on piles of trees building webs. RNA-sequencing was performed for venom gland tissue and whole body except venom gland.
Project description:Callobius koreanus (C.koreanus) is a wandering spider and a member of the Amaurobiidae family, infraorder Araneae. RNA-sequencing was performend for venom gland tissue and whole body except venom gland.
Project description:Entomopathogenic nematodes (EPNs) are unique parasitic nematodes due to their symbiosis with entomopathogenic bacteria and their ability to kill insect hosts quickly after infection. Although it has been widely believed that EPNs rely on their bacterial partners for killing insect hosts, compelling evidence from previous studies challenges this model. We developed an improved method of activating millions of Steinernema carpocapsae infective juveniles (IJs) in vitro to harvest excreted/secreted (ES) proteins for bioactivity tests and proteomics analysis. We found that a low dose of the ES proteins from early activated nematodes is lethal to Drosophila melanogaster adults within 2-6 hours. We analyzed the protein composition of this venom using mass spectrometry and identified 472 proteins. Many of these venom proteins share high homology with those of vertebrate-parasitic nematodes. Among many different families of proteins found in the venom, proteases and protease inhibitors are especially abundant. Some toxin-related proteins such as Shk domain-containing proteins were also detected. We further analyzed the transcriptomes of individual non-activated IJs and nematodes that were activated in vitro and in vivo, which revealed a dramatic shift in gene expression during IJ activation. By comparing the whole transcriptomes and the genes encoding venom proteins between the in vitro and in vivo activated nematodes, we confirmed that the in vitro activation is a good approximation of the in vivo process. In summary, our findings strongly support a new model that S. carpocapsae and likely other Steinernema EPNs have a more active role in contributing to the pathogenicity of the nematode-bacterium complex than simply relying on their symbiotic bacteria. Furthermore, we propose that EPNs are a good model system for investigating vertebrate- and human-parasitic nematodes, especially regarding the function of ES products.
Project description:The recent COVID-19 pandemic shows the critical need for novel broad spectrum antiviral agents. Scorpion venoms are known to contain highly bioactive peptides, several of which have demonstrated strong antiviral activity against a range of viruses. We have generated the first annotated reference transcriptome for the Androctonus amoreuxi venom gland and used high performance liquid chromatography, transcriptome mining, circular dichroism and mass spectrometric analysis to purify and characterize twelve previously undescribed venom peptides. Selected peptides were tested for binding to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and inhibition of the spike RBD – human angiotensin-converting enzyme 2 (hACE2) interaction using surface plasmon resonance-based assays. Seven peptides showed dose-dependent inhibitory effects, albeit with IC50 in the high micromolar range (117–1202 μM). The most active peptide was synthesized using solid phase peptide synthesis and tested for its antiviral activity against SARS-CoV-2 (Lineage B.1.1.7). On exposure to the synthetic peptide of a human lung cell line infected with replication-competent SARS-CoV-2, we observed an IC50 of 200 nM, which was nearly 600-fold lower than that observed in the RBD – hACE2 binding inhibition assay. Our results show that scorpion venom peptides can inhibit the SARS-CoV-2 replication although unlikely through inhibition of spike RBD – hACE2 interaction as the primary mode of action. Scorpion venom peptides represent excellent scaffolds for design of novel anti-SARS-CoV-2 constrained peptides. Future studies should fully explore their antiviral mode of action as well as the structural dynamics of inhibition of target virus-host interactions.