Project description:Here we performed a ChIP-seq experiment for Zeb1 trancription factor on a sample of adherent cultures of human neural stem cells (Cb192 cell line) and of a human glioblastoma cancer stem-like cell line (NCH421k). The result is the generation of the genome-wide maps for Zeb1 binding to chromatin in human neural stem cells and glioblastoma stem-like cells.
Project description:Glioblastoma-derived neural stem (GNS) cells were reprogrammed to induced pluripotent stem (iPS) cells by transgenic expression of OCT4 and KLF4. Gene expression profiling was performed in comparison to normal neural stem (NS) cells reprogrammed in parallel, as well as standard ES cells as an independent reference.
Project description:Glioblastoma-derived neural stem (GNS) cells were reprogrammed to induced pluripotent stem (iPS) cells by transgenic expression of OCT4 and KLF4. Genome-wide DNA methylation status was profiled at 27,578 CpG sites to assess epigenetic erasure and restoration due to reprogramming and redifferentiation to the neural stem (NS) cell state.
Project description:We identified PHF5A as a functional synthetic-lethal hit in glioblastoma stem cells compared to normal neural stem cells. We wanted to perform analysis of RNA isoforms present in glioblastoma or normal neural stem cells with or without PHF5A depletion. We performed shRNA knockdown of PHF5A or used non-silencing shRNA as a control, selected infected cells with puromycin, and isolated RNA for sequencing.
Project description:Glioblastoma-derived neural stem (GNS) cells were reprogrammed to induced pluripotent stem (iPS) cells by transgenic expression of OCT4 and KLF4. Genome-wide DNA methylation status was profiled at 485,000 loci to assess epigenetic erasure and restoration due to reprogramming and redifferentiation to the neural stem (NS) cell state.
Project description:Glioblastoma-derived neural stem (GNS) cells were reprogrammed to induced pluripotent stem (iPS) cells by transgenic expression of OCT4 and KLF4. Genome-wide DNA methylation status was profiled at 485,000 loci to assess epigenetic erasure and restoration due to reprogramming and redifferentiation to the neural stem (NS) cell state.
Project description:Chromatin accessibility was profiled by ATAC-seq in normal and glioblastoma-derived neural stem (GNS) cells, in self-renewing conditions and in response to differentiation stimulus with bone morphogenic protein (BMP).