Evaluation of the sensitivities of six triple-negative breast cancer (TNBC) cell lines to 23 different PI3K/AKT/mTOR inhibitors or to a MEK inhibitor (trametinib). Dataset 2 of 2: GR metrics.
Project description:We explored potential bypass mechanisms to PI3K/mTOR-directed therapy in KRAS mutant CRC models, utilizing genetically engineered mouse models (GEMM) to generate acquired resistance to the targeted dual PI3K/mTOR small molecule inhibitor PF-04691502. Transcriptomic analysis revealed a dynamic stem-like progenitor signature which was increased in the presence of drug pressure.
Project description:Phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway activation contributes to mantle cell lymphoma (MCL) pathogenesis and drug resistance. However, the use of mTOR inhibitors as single agents have shown limited clinical efficacy in relation with drug activation of feedback loops. Selective PI3K inhibition or dual PI3K/mTOR catalytic inhibition are different therapeutic approaches developed to achieve effective pathway blockage. Here, we evaluated the antitumor activity of a mTOR inhibitor, a pan-PI3K inhibitor and a dual PI3K/mTOR inhibitor in primary MCL cells. We found that dual PI3K/mTOR inhibitor modulated angiogenesis, tumor invasiveness and cytokine signaling compared to a mTOR inhibitor and a pan-PI3K inhibitor in MCL. We used microarrays to compare the effect of these three compounds in MCL and identified distinct classes of down-regulated genes modulated by each compound. Global RNA expression in primary cells from two MCL patients treated with a mTOR inhibitor, a pan-PI3K inhibitor and a dual PI3K/mTOR inhibitor for 8 hours
Project description:BackgroundChildren with neurofibromatosis type 1 (NF1) develop optic pathway gliomas, which result from impaired NF1 protein regulation of Ras activity. One obstacle to the implementation of biologically targeted therapies is an incomplete understanding of the individual contributions of the downstream Ras effectors (mitogen-activated protein kinase kinase [MEK], Akt) to optic glioma maintenance. This study was designed to address the importance of MEK and Akt signaling to Nf1 optic glioma growth.MethodsPrimary neonatal mouse astrocyte cultures were employed to determine the consequence of phosphatidylinositol-3 kinase (PI3K)/Akt and MEK inhibition on Nf1-deficient astrocyte growth. Nf1 optic glioma-bearing mice were used to assess the effect of Akt and MEK inhibition on tumor volume, proliferation, and retinal ganglion cell dysfunction.ResultsBoth MEK and Akt were hyperactivated in Nf1-deficient astrocytes in vitro and in Nf1 murine optic gliomas in vivo. Pharmacologic PI3K or Akt inhibition reduced Nf1-deficient astrocyte proliferation to wild-type levels, while PI3K inhibition decreased Nf1 optic glioma volume and proliferation. Akt inhibition of Nf1-deficient astrocyte and optic glioma growth reflected Akt-dependent activation of mammalian target of rapamycin (mTOR). Sustained MEK pharmacologic blockade also attenuated Nf1-deficient astrocytes as well as Nf1 optic glioma volume and proliferation. Importantly, these MEK inhibitory effects resulted from p90RSK-mediated, Akt-independent mTOR activation. Finally, both PI3K and MEK inhibition reduced optic glioma-associated retinal ganglion cell loss and nerve fiber layer thinning.ConclusionThese findings establish that the convergence of 2 distinct Ras effector pathways on mTOR signaling maintains Nf1 mouse optic glioma growth, supporting the evaluation of pharmacologic inhibitors that target mTOR function in future human NF1-optic pathway glioma clinical trials.
Project description:The sustained clinical activity of the BRAF inhibitor vemurafenib (PLX4032/RG7204) in patients with BRAF(V600) mutant melanoma is limited primarily by the development of acquired resistance leading to tumor progression. Clinical trials are in progress using MEK inhibitors following disease progression in patients receiving BRAF inhibitors. However, the PI3K/AKT pathway can also induce resistance to the inhibitors of MAPK pathway.The sensitivity to vemurafenib or the MEK inhibitor AZD6244 was tested in sensitive and resistant human melanoma cell lines exploring differences in activation-associated phosphorylation levels of major signaling molecules, leading to the testing of co-inhibition of the AKT/mTOR pathway genetically and pharmacologically. There was a high degree of cross-resistance to vemurafenib and AZD6244, except in two vemurafenib-resistant cell lines that acquired a secondary mutation in NRAS. In other cell lines, acquired resistance to both drugs was associated with persistence or increase in activity of AKT pathway. siRNA-mediated gene silencing and combination therapy with an AKT inhibitor or rapamycin partially or completely reversed the resistance.Primary and acquired resistance to vemurafenib in these in vitro models results in frequent cross resistance to MEK inhibitors, except when the resistance is the result of a secondary NRAS mutation. Resistance to BRAF or MEK inhibitors is associated with the induction or persistence of activity within the AKT pathway in the presence of these drugs. This resistance can be potentially reversed by the combination of a RAF or MEK inhibitor with an AKT or mTOR inhibitor. These combinations should be available for clinical testing in patients progressing on BRAF inhibitors.
Project description:Hepatocellular carcinoma (HCC) is the sixth most common cancer, and the third most common cause of cancer related death worldwide. The multi-kinase inhibitor Sorafenib represents the only systemic treatment option until today, and results from clinical trials with allosteric mTOR inhibitors were sobering. Since the PI3K/AKT/mTOR and RAF/MEK/ERK signaling pathways are frequently upregulated in HCC, we have analyzed the effects of AKT inhibitor MK-2206, MEK inhibitor AZD6244 (ARRY 142886) and mTOR kinase inhibitor AZD8055, given as single drugs or in combination, on proliferation and apoptosis of three HCC cell lines in vitro. We show that all three inhibitor combinations synergistically inhibit proliferation of the three HCC cell lines, with the strongest synergistic effect observed after vertical inhibition of AKT and mTORC1/2. We demonstrate that AKT kinase activity is restored 24h after blockade of mTORC1/2 by increased phosphorylation of T308, providing a rationale for combined targeting of AKT and mTOR inhibition in HCC. Our data suggest that a combination of inhibitors targeting those respective pathways may be a viable approach for future application in patients with hepatocellular carcinoma.
Project description:Treatment-naive HIV, HCV mono-/co-infected individuals with CD4+ T cell counts >300/uL were recruited, and the global gene expression profiles of CD4+ T cells were analyzed.Equal amount of CD4+ T cells isolated from each individual were pooled to form three replicative groups. Total RNA was isolated and analyzed by Affymetrix GeneChip Array. Differentially expressed genes were identified and further confirmed by qRT-PCR. To further understand the biological meanings underlying the transcriptome data the Gene Set Enrichment Analysis was used.
Project description:The aim of the project was to characterize changes in gene expression that are associated with induced autophagic flux. We engineered HeLa, HEK 293 and SH-SY5Y cell lines to express tandem-fluorecent LC3 (tf-LC3). The ratio of the red and green fluorophores indicated how much of the LC3 is in the acidic interior of lysosomes, which was a proxy measure for autophagic flux. RNA sequencing was performed for the cell lines at baseline and 1h, 15h and 30h after treatments. Additional untreated samples were also sequenced at some but not all time points. Autophagy was induced by amino acid starvation or mTOR inhibition (AZD8055).