Project description:We found that auxin stimulates gene expression of DWF4, which encodes a rate-dertermining step in brassinosteroid biosynthesis pathways. This increased gene expressioin subsequently led to elevation of the biosynthetic flux in Arabidopsis roots. To determine the list of genes that are regulated by auxin-synthesizing brassinosteroids, we challenged Arabidopsis seedlings with either auxin only or auxin plus brassinosteroid biosynthetic inhibitor brassinazole. Keywords: Hormone treatment
Project description:We found that auxin stimulates gene expression of DWF4, which encodes a rate-dertermining step in brassinosteroid biosynthesis pathways. This increased gene expressioin subsequently led to elevation of the biosynthetic flux in Arabidopsis roots. To determine the list of genes that are regulated by auxin-synthesizing brassinosteroids, we challenged Arabidopsis seedlings with either auxin only or auxin plus brassinosteroid biosynthetic inhibitor brassinazole. Keywords: Hormone treatment Arabidopsis seedlings (Columbia ecotype) were grown for 10 d on 1× MS agar-solidified media under long-day conditions (16:8, white light and dark cycle). The seedlings were then transferred to 2 different liquid media containing either 10–7 M 2,4-D or 10–7 M 2,4-D plus 10–6 M brassinazole. After 8 h of treatment, the seedlings were blotted with paper towels to remove excess media and subject to total RNA isolation. Total RNAs isolated from each batch were prepared from 3 replicate seedlings using an RNeasy plant mini kit (Qiagen, Germany).
Project description:To obtain more information on auxin-regulated gene expression, we treated Arabidopsis seedlings with auxin biosynthesis or signaling inhibitors, then performed DNA microarray analyses.
Project description:The goal of this study is to clarify the function of ARF7 in the pathway of auxin inducing lateral root development. We isolated total RNA from the roots of 8-day-old Col-0 and arf7 seedlings. New genes act downstream of ARF7 after responding to auxin treatment, during the lateral root formation, are discovered.
Project description:Analysis of brassinosteroid (BR) and auxin effects on gene expression in Arabidopsis roots. Our genomic results indicate that BR and auxin induce largely opposite gene expression responses in primary roots.
Project description:Analysis of brassinosteroid (BR) and auxin effects on gene expression in Arabidopsis roots. Our genomic results indicate that BR and auxin induce largely opposite gene expression responses in primary roots. RNA-Seq for 7-day-old Arabidopsis Col-0, dwf4, bri1-116, and bri1-116;bzr1-1D roots grown on regular medium and treated with brassinolide, auxin or mock solution for 4 hr.
Project description:Reduced glutathione (GSH) is required for cell cycle initiation and auxin-regulated root meristem development. Transcriptome profiling of the roots and shoots of the root meristemless 1 (rml1) mutant, which has about 3% of the wild type GSH, revealed a divergent auxin and strigolactone response linked to the arrest of the cell cycle. Plants of the rml1 mutant and Columbia-0 ecotype were harvested and separated into roots and shoots, then RNA extraction and Affymetrix Agronomics Tiling Array were performed.
Project description:Reduced glutathione (GSH) is required for cell cycle initiation and auxin-regulated root meristem development. Transcriptome profiling of the roots and shoots of the root meristemless 1 (rml1) mutant, which has about 3% of the wild type GSH, revealed a divergent auxin and strigolactone response linked to the arrest of the cell cycle.
Project description:Understanding how developmental and environmental signals are integrated to produce specific responses is one of the main challenges of modern biology. Hormones and, most importantly, interactions between different hormones serve as crucial regulators of plant growth and development, playing central roles in the coordination of internal developmental processes with the environment. Herein, a combination of physiological, genetic, cellular, and whole-genome expression profiling approaches has been employed to investigate the mechanisms of interaction between two key plant hormones, ethylene and auxin. Quantification of the morphological effects of ethylene and auxin in a variety of mutant backgrounds indicates that auxin biosynthesis, transport, signaling and response are required for the ethylene-induced growth inhibition in roots but not in hypocotyls. Analysis of the activation of early auxin and ethylene responses at cellular level, as well as of global changes in gene expression in the wild type versus auxin and ethylene mutants, suggests a simple mechanistic model for the interaction between these two hormones in roots. This model not only implies existence of several levels of interaction but also provides a likely explanation for the strong ethylene response defects observed in auxin mutants. Experiment Overall Design: The effect of ethylene on gene expression in Col-0 (wild-type) and aux1-7 (an auxin resistant mutant) seedlings' roots was investigated. Hydrocarbon-free air was used as control for the ethylene treatment. Two biological replicates were examined. Experiment Overall Design: Similarly, the effect of auxin (IAA) on gene expression in Col (wild-type) and ein2-5 (an ethylene insensitive mutant) seedlings' roots was studied. Two biological replicates were employed.
Project description:Transcriptional profiling of Arabidopsis thaliana seedlings treated with auxin (indole-3-acetic acid), highlighting to the physiological function of auxin by observing early response of gene expressions in Arabidopsis seedlings.