Project description:N-glycans are diversified by a panel of glycosyltransferases in the Golgi, which are supposed to modify various glycoproteins in promiscuous manners, resulting in unpredictable glycosylation profiles in general. In contrast, our previous study showed that fucosyltransferase 9 (FUT9) generates Lewis X glycotopes primarily on lysosome-associated membrane protein 1 (LAMP-1) in neural stem cells. Here, we demonstrate that a contiguous 29-amino acid sequence in the N-terminal domain of LAMP-1 is responsible for promotion of the FUT9-catalyzed Lewis X modification. Interestingly, Lewis X modification was induced on erythropoietin as a model glycoprotein both in vitro and in cells, just by attaching this sequence to its C-terminus. Based on these results, we conclude that the amino acid sequence from LAMP-1 functions as a "Lewis X code", which is deciphered by FUT9, and can be embedded into other glycoproteins to evoke a Lewis X modification, opening up new possibilities for protein engineering and cell engineering.
Project description:Ubiquitylation is among the most prevalent post-translational modifications (PTMs) and regulates numerous cellular functions. Interestingly, ubiquitin (Ub) can be itself modified by other PTMs, including acetylation and phosphorylation. Acetylation of Ub on K6 and K48 represses the formation and elongation of Ub chains. Phosphorylation of Ub happens on multiple sites, S57 and S65 being the most frequently modified in yeast and mammalian cells, respectively. In mammals, the PINK1 kinase activates ubiquitin ligase Parkin by phosphorylating S65 of Ub and of the Parkin Ubl domain, which in turn promotes the amplification of autophagy signals necessary for the removal of damaged mitochondria. Similarly, TBK1 phosphorylates the autophagy receptors OPTN and p62 to initiate feedback and feedforward programs for Ub-dependent removal of protein aggregates, mitochondria and pathogens (such as Salmonella and Mycobacterium tuberculosis). The impact of PINK1-mediated phosphorylation of Ub and TBK1-dependent phosphorylation of autophagy receptors (OPTN and p62) has been recently linked to the development of Parkinson's disease and amyotrophic lateral sclerosis, respectively. Hence, the post-translational modification of Ub and its receptors can efficiently expand the Ub code and modulate its functions in health and disease.
Project description:SARS-CoV-2, the causative agent of COVID-19, manipulates host gene expression through multiple mechanisms, including disruption of RNA processing. Here, we identify a novel function of the viral nonstructural protein 14 (NSP14) in inducing N7-methylguanosine (m7G) modification in the internal sequences of host mRNA. We demonstrate that NSP14 catalyzes the conversion of guanosine triphosphate (GTP) to m7GTP, which is subsequently incorporated into mRNA by RNA polymerase II, resulting in widespread internal m7G modification. This activity is dependent on NSP14's N7-methyltransferase (N7-MTase) domain and is enhanced by interaction with NSP10. Internal m7G modification by NSP14 predominantly occurs in the nucleus and is conserved across alpha-, beta- and gamma-coronaviruses. Mechanistically, we show that this RNA modification disrupts normal splicing by promoting intron retention and generating novel splice junctions. Importantly, inhibition of m7G modification, through pharmacological targeting of NSP14 or RNA polymerase II, impairs SARS-CoV-2 replication, indicating that the virus hijacks host transcriptomic machinery to support infection. Our findings reveal a previously unrecognized epitranscriptomic mechanism by which coronaviruses reprogram host gene expression and suggest that NSP14-induced m7G modification is a potential therapeutic target.