ABSTRACT: 19 cover crops species root exudates were characterized by LC-MS/MS in DIA mode for chemical characterization of the root exudate profiles across different agricultural crops grown hydroponically.
Project description:19 cover crops species root exudates were characterized by GC-MS for chemical characterization of the root exudate profiles across different agricultural crops grown hydroponically.
Project description:19 cover crops species root exudates were characterized by LC-MS/MS in DIA mode for chemical characterization of the root exudate profiles across different agricultural crops grown hydroponically.
Project description:19 cover crops species root exudates were characterized by GC-MS for chemical characterization of the root exudate profiles across different agricultural crops grown hydroponically.
Project description:These samples are a part of a study investigating microbial responses to cover crop root exudates. We utilized 4 cover crop species (each with unique root exudate profiles), collected the pure root exudates, and applied them to soil mirocosms. metaG, metaT, metaP, and targeted and untargeted metabolomics were applied to assess the microbial responses.
Project description:These samples are a part of a study investigating microbial responses to cover crop root exudates. We utilized 4 cover crop species (each with unique root exudate profiles), collected the pure root exudates, and applied them to soil mirocosms. metaG, metaT, metaP, and targeted and untargeted metabolomics were applied to assess the microbial responses.
Project description:Cover cropping is an effective method to protect agricultural soils from erosion, promote nutrient and moisture retention, encourage beneficial microbial activity, and maintain soil structure. Reusing winter cover crop root channels with the maize roots during the summer allows the cash crop to extract resources from farther niches in the soil horizon. In this study, we investigate how reusing winter cover crop root channels to grow maize (Zea mays L.) affects the composition and function of the bacterial communities in the rhizosphere using 16S rRNA gene amplicon sequencing and metaproteomics. We discovered that the bacterial community significantly differed among cover crop variations, soil profile depths, and maize growth stages. Re-usage of the root channels increased bacterial abundance, and it further increases as we elevate the complexity from monocultures to mixtures. Upon mixing legumes with brassicas and grasses, the overall expression of several steps of the carbon cycle (C) and the nitrogen cycle (N) improved. The deeper root channels of legumes and brassicas compared to grasses correlated with higher bacterial 16S rRNA gene copy numbers and community roles in the respective variations in the subsoil regimes due to the increased availability of root exudates secreted by maize roots. In conclusion, root channel re-use (monocultures and mixtures) improved the expression of metabolic pathways of the important C and N cycles, and the bacterial communities, which is beneficial to the soil rhizosphere as well as to the growing crops.
Project description:In our previous work, we found that the root exudates of sgn3 myb36 promoted the colonization of CHA0 on roots. Through LC-MS, we identified a large amount of glutamine (Gln) in the root exudates of sgn3 myb36. Therefore, we aim to use RNA-seq to uncover whether the root exudates of sgn3 myb36 and Gln have the same regulatory effects on CHA0. By conducting differential analysis with the CK (CHA0 treated with wild-type root exudates), we hope to identify the specific regulatory mechanisms of sgn3 myb36 and Gln on CHA0.
Project description:In many plant species, flower stigma secretions are important in early stages of sexual reproduction. Previous chemical analysis and proteomic characterization of these exudates provided insights into their biological function. Nevertheless, the presence of nucleic acids in the stigma exudates has not been previously reported. Here we studied the stigma exudates of Pyrus communis, Pyrus pyrifolia and Pyrus syriaca, and showed them to harbor extracellular RNAs of various sizes. RNA sequencing revealed, for the first time, the presence of known Rosaceae mature micro-RNAs (miRs), also abundant in the stigma source tissue. Predicted targets of the exudate miRs in the Arabidopsis thaliana genome include genes involved in various biological processes. Several of these genes are pollen transcribed, suggesting possible involvement of exudate miRs in transcriptional regulation of the pollen. Moreover, extracellular miRs can potentially act across kingdoms and target genes of stigma interacting organisms/microorganisms, thus opening novel applicative avenues in HortSciences.