Project description:Streptomyces bingchenggensis is a soil bacterium that produces milbemycins. Milbemycins are commercially insecticidal and acaricidal antibiotics in agriculture, owing to their advantages such as high efficiency and safety for human and animal. To obtain genes valuable for further improvement of titer, we have compared two strains(the parental strain and high-yielding strain)by whole genome microarray expression profiling as a discovery platform. In Streptomyces bingchenggensis, there are abundant transporters, which are responsible for transporting various substrates. In the result, some sugar transporter genes showed significant gene expression.
Project description:Streptomyces bingchenggensis is a soil bacterium that produces milbemycins. Milbemycins and their derivatives are valuable biopesticides in the agricultural field. Owing to their advantages such as high efficiency and safety for human and animal,it was urgent to construct high-yield strain to ensure low production cost. To obtain genes closely correlated with milbemycin production, we have compared the whole genome microarray expression profiling of two strains (the parent one strain and high-yielding strain). In Streptomyces bingchenggensis, there are abundant exporters, which are responsible for transporting various substrates. In the result, some drug exporters were chosen to enhance production of milbemycin .
Project description:Background Streptomyces are key contributors to soil microbiome function, known for their biosynthetic diversity. While advances in -omics technologies have improved our understanding of microbiome composition and metabolic potential, the mechanisms underpinning interspecies interactions remain poorly resolved. Here, we investigate the molecular basis of interactions among four sympatric Streptomyces soil microbiome isolates, focusing on phenotypic, metabolomic and transcriptomic responses. Results Co-culture experiments revealed that one isolate, strain A, exhibited pronounced phenotypic changes when grown alongside each of the other three strains. Untargeted metabolomics and RNA-seq analyses showed that strain A undergoes distinct metabolic and transcriptional shifts depending on its partner, with the strongest response elicited by strain C. Despite all four strains possessing a conserved desferrioxamine biosynthetic gene cluster, only strain C constitutively produced desferrioxamine B (DFO-B), a hydroxymate siderophore, indicating a role of iron bioavailability in the interaction. Supplementation with DFO-B or iron mimicked the growth stimulation of strain A observed in co-culture with strain C, and CRISPR base editing of desD in strain C abolished both DFO production and the phenotypic induction of strain A. However, transcriptomic profiles of strain A varied significantly depending on the partner strain, with distinct sets of biosynthetic gene clusters and metabolic pathways activated in response to strains B and C, suggesting additional cues beyond DFO-B. In contrast, strain D did not elicit growth stimulation in its partners, and itself showed downregulation of amino acid and carbon metabolism when co-cultured with strain C. These findings indicate that Streptomyces interactions are not only mediated by siderophore piracy but also involve complex, strain-specific molecular responses. Conclusions Our findings demonstrate that Streptomyces interactions are highly strain-specific and only partly mediated by siderophore piracy, with DFO-B acting as a potent interspecies cue. The divergent molecular responses to different partners suggest nuanced mechanisms of microbial sensing and competition. These insights advance our understanding of microbial crosstalk and highlight the ecological and evolutionary complexity of siderophore-mediated interactions. By integrating transcriptomics, metabolomics, and biochemical assays, we present a robust framework for dissecting microbial interactions, with implications for microbiome engineering and synthetic community design.
Project description:This study compared the genome of Streptomyces rimosus rimosus against that of Streptomyces coelicolor. It also compared 4 strains with changes in oxytetracycline production and derived from G7, the type strain, against G7. Keywords: Comparative genomic hybridization
Project description:We addressed the transcriptional changes in strains with mutations of satKR (sco3390-3389) genes to elucidate which genes are engaged in restoration of sporulation in non-sporulating Streptomyces coelicolor PS04 strain. Our experiments show that SatR can regulate growth and spore formation in Streptomyces and its activity is independent to DNA supercoiling.
Project description:Biofilms are ubiquitous in natural, medical, and engineering environments. While most antibiotics that primarily aim to inhibit cell growth may result in bacterial drug resistance, biofilm inhibitors do not affect cell growth and there is less chance of developing resistance. This work sought to identify novel, non-toxic and potent biofilm inhibitors from Streptomyces bacteria for reducing the biofilm formation of Pseudomonas aeruginosa PAO1. Out of 4300 Streptomyces strains, one species produced and secreted peptide(s) to inhibit P. aeruginosa biofilm formation by 93% without affecting the growth of planktonic cells. Global transcriptome analyses (DNA microarray) revealed that the supernatant of the Streptomyces 230 strain induced phenazine, pyoverdine, and pyochelin synthesis genes. Electron microscopy showed that the supernatant of Streptomyces 230 strain reduced the production of polymeric matrix in P. aeruginosa biofilm cells, while the Streptomyces species enhanced swarming motility of P. aeruginosa. Therefore, current study suggests that Streptomyces bacteria are an important resource of biofilm inhibitors as well as antibiotics.
Project description:Two component sensor-response regulator systems (TCSs) are very common in the genomes of the Streptomyces species that have been fully sequenced to date. It has been suggested that this large number is an evolutionary response to the variable environment that Streptomyces encounter in soil. Notwithstanding this, TCSs are also more common in the sequenced genomes of other Actinomycetales when these are compared to the genomes of most other eubacteria. In this study, we have used DNA/DNA genome microarray analysis to compare fourteen Streptomyces species and one closely related genus to Streptomyces coelicolor in order to identify a core group of such systems. This core group is compared to the syntenous and non-syntenous TCSs present in the genome sequences of other Actinomycetales in order to separate the systems into those present in Actinomycetales in general, the Streptomyces specific systems and the species specific systems. Horizontal transfer does not seem to play a very important role in the evolution of the TCS complement analyzed in this study. However, cognate pairs do not necessarily seem to evolve at the same pace, which may indicate the evolutionary responses to environmental variation may be reflected differently in sequence changes within the two components of the TCSs. The overall analysis allowed subclassification of the orphan TCSs and the TCS cognate pairs and identification of possible targets for further study using gene knockouts, gene overexpression, reporter genes and yeast two hybrid analysis.
Project description:RNA seq analysis was performed using adpA-deleted and adpA-overexpressed Streptomyces clavuligerus strains to determine its regulatory effect on tunicamycin and other secondary metabolites production
Project description:Streptomyces bingchenggensis is a soil bacterium that produces a family of macrolide antibiotics, milbemycins, which is commercially important in crop protection, human and veterinary medicine. After the complete genome sequence, and annotation, for further development of our gene expression approach to biosynthesis, we have employed whole genome microarray expression profiling as a discovery platform to obtain improved specificity and sensitivity of gene expression analysis, allowing a global and at the same time detailed picture of how gene clusters for secondary metabolism are modulated. In the result, we confirmed the expression mil and nan gene cluster, furthermore, pks3, pks5 and nrps7, nrps8 also showed significant gene expression, but no obvious products detected. In Streptomyces bingchenggensis, there are also corresponding genes belonging to Defense mechanisms, which is much more than other Streptomyces, for the resistance of own metabolites and dealing with complex environmental factors.