Project description:Two long serial analysis of gene expression (LongSAGE) libraries of germinating conidia of Botrytis cinerea were generated with and without resveratrol treatments for unraveling the antifungal mechanisms of this phytoalexin by global transcriptome analysis – 82,786 total tags and a minimum of 15,665 unitags were obtained respectively. By tag-to-gene mapping, about 55% of the total unitags were matched to known genes. There were 109 unitags that showed significant differences in the two LongSAGE libraries, corresponding to 43 up- and 44 down-regulated genes, and 22 unmatched unitags as new gene candidates. These results showed that resveratrol inhibited expression of genes related to the glycolysis-Krebs cycle and mitochondrial electron transport chains at multiple sites in conidia germination, with induction of modified Entner–Doudoroff pathway as metabolic compensation. The chaperone-mediated protein folding and ubiquitin proteolysis systems were inhibited, while detoxification of resveratrol via ABC transporters was activated in this fungal pathogen. Keywords: Botrytis cinerea; LongSAGE; metabolic pathway; resveratrol; transcriptome
Project description:Pathogens infection exerts major effects on gene expression, which is reconfigured to raise the defences of the attacked plant. In the recent years the establishment of an hypoxic environment during Botrytis infection was described. We used the pentuple erfVII mutant to evaluate the contribution of ERFVII members to plant reaction to Botrytis and their effect on gene expression.
Project description:Plant defensins are a broadly distributed family of antimicrobial peptides which have been primarily studied for agriculturally relevant antifungal activity. Recent studies have probed defensins against gram negative bacteria revealing evidence for multiple mechanisms of action including membrane lysis and ribosomal inhibition. In this study, a γ-core motif synthetic analog ( Atr-DEF2(G39-C55) ) of Amaranthus tricolor DEF2 (Atr-DEF2) is used to probe plant defensin antibacterial mechanism of action via proteomics.
Project description:To investigate NUP62 in the regulation of plant defense against Botrytis cinerea , we performed gene expression profiling analysis using data obtained from RNA-seq of nup62 mutant and WT arabidopsis with or without Botrytis cinerea infection.
Project description:The cell wall is among the first plant structures encountered by necrotrophic fungal pathogens, such as Botrytis cinerea. The composition of plant cell walls varies depending on the species, type of cell or tissue, and stage of development. Cell walls are important reservoirs of energy-rich sugars for pathogens, but also are barriers that impair colonization of host tissues. Growing fungal hyphae secrete enzymes that hydrolyze cell wall polysaccharides. Degradation of wall polysaccharides provides nutrients for the pathogen and improves the access of secreted Botrytis enzymes to all host cell wall targets and cytoplasmic constituents. Destruction of host cell walls results in tissue maceration, a hallmark of diseases caused by Botrytis. The Botrytis genome encodes 1,155 predicted carbohydrate-active enzyme (CAZy) genes; products of 275 are potentially secreted. Transcriptome sequencing identified Botrytis CAZy genes expressed during infections of lettuce leaves, ripe tomato fruit and grape berries. On all three hosts, Botrytis expresses a common group of 229 predicted CAZy genes including 28 pectin-modifying enzymes, 21 hemicellulose-modifying proteins, 18 enzymes targeting pectin and hemicellulose side-branches, and 16 enzymes that may degrade cellulose. Pectin polysaccharides are abundant in grape and tomato cell walls, but lettuce leaf walls are predominantly hemicelluloses and cellulose. These results suggest that Botrytis targets similar wall polysaccharide networks; e.g., pectins, on leaves and fruit, but also attacks unique host wall polysaccharide substrates The diversity of the Botrytis CAZy proteins may be partly responsible for its wide host range.
Project description:The cell wall is among the first plant structures encountered by necrotrophic fungal pathogens, such as Botrytis cinerea. The composition of plant cell walls varies depending on the species, type of cell or tissue, and stage of development. Cell walls are important reservoirs of energy-rich sugars for pathogens, but also are barriers that impair colonization of host tissues. Growing fungal hyphae secrete enzymes that hydrolyze cell wall polysaccharides. Degradation of wall polysaccharides provides nutrients for the pathogen and improves the access of secreted Botrytis enzymes to all host cell wall targets and cytoplasmic constituents. Destruction of host cell walls results in tissue maceration, a hallmark of diseases caused by Botrytis. The Botrytis genome encodes 1,155 predicted carbohydrate-active enzyme (CAZy) genes; products of 275 are potentially secreted. Transcriptome sequencing identified Botrytis CAZy genes expressed during infections of lettuce leaves, ripe tomato fruit and grape berries. On all three hosts, Botrytis expresses a common group of 229 predicted CAZy genes including 28 pectin-modifying enzymes, 21 hemicellulose-modifying proteins, 18 enzymes targeting pectin and hemicellulose side-branches, and 16 enzymes that may degrade cellulose. Pectin polysaccharides are abundant in grape and tomato cell walls, but lettuce leaf walls are predominantly hemicelluloses and cellulose. These results suggest that Botrytis targets similar wall polysaccharide networks; e.g., pectins, on leaves and fruit, but also attacks unique host wall polysaccharide substrates The diversity of the Botrytis CAZy proteins may be partly responsible for its wide host range.
Project description:Next generation sequencing was performed to identify genes changed in Arabidopsis thaliana upon Botrytis cinerea infection. The goal of the work is to find interesting genes involved in plant defense. The object is to reveal the molecular mechanism of plant defense.
Project description:The cell wall is among the first plant structures encountered by necrotrophic fungal pathogens, such as Botrytis cinerea. The composition of plant cell walls varies depending on the species, type of cell or tissue, and stage of development. Cell walls are important reservoirs of energy-rich sugars for pathogens, but also are barriers that impair colonization of host tissues. Growing fungal hyphae secrete enzymes that hydrolyze cell wall polysaccharides. Degradation of wall polysaccharides provides nutrients for the pathogen and improves the access of secreted Botrytis enzymes to all host cell wall targets and cytoplasmic constituents. Destruction of host cell walls results in tissue maceration, a hallmark of diseases caused by Botrytis. The Botrytis genome encodes 1,155 predicted carbohydrate-active enzyme (CAZy) genes; products of 275 are potentially secreted. Transcriptome sequencing identified Botrytis CAZy genes expressed during infections of lettuce leaves, ripe tomato fruit and grape berries. On all three hosts, Botrytis expresses a common group of 229 predicted CAZy genes including 28 pectin-modifying enzymes, 21 hemicellulose-modifying proteins, 18 enzymes targeting pectin and hemicellulose side-branches, and 16 enzymes that may degrade cellulose. Pectin polysaccharides are abundant in grape and tomato cell walls, but lettuce leaf walls are predominantly hemicelluloses and cellulose. These results suggest that Botrytis targets similar wall polysaccharide networks; e.g., pectins, on leaves and fruit, but also attacks unique host wall polysaccharide substrates The diversity of the Botrytis CAZy proteins may be partly responsible for its wide host range. 3 biological replicates consisting of groups of infected tomato fruits from different plants
Project description:The cell wall is among the first plant structures encountered by necrotrophic fungal pathogens, such as Botrytis cinerea. The composition of plant cell walls varies depending on the species, type of cell or tissue, and stage of development. Cell walls are important reservoirs of energy-rich sugars for pathogens, but also are barriers that impair colonization of host tissues. Growing fungal hyphae secrete enzymes that hydrolyze cell wall polysaccharides. Degradation of wall polysaccharides provides nutrients for the pathogen and improves the access of secreted Botrytis enzymes to all host cell wall targets and cytoplasmic constituents. Destruction of host cell walls results in tissue maceration, a hallmark of diseases caused by Botrytis. The Botrytis genome encodes 1,155 predicted carbohydrate-active enzyme (CAZy) genes; products of 275 are potentially secreted. Transcriptome sequencing identified Botrytis CAZy genes expressed during infections of lettuce leaves, ripe tomato fruit and grape berries. On all three hosts, Botrytis expresses a common group of 229 predicted CAZy genes including 28 pectin-modifying enzymes, 21 hemicellulose-modifying proteins, 18 enzymes targeting pectin and hemicellulose side-branches, and 16 enzymes that may degrade cellulose. Pectin polysaccharides are abundant in grape and tomato cell walls, but lettuce leaf walls are predominantly hemicelluloses and cellulose. These results suggest that Botrytis targets similar wall polysaccharide networks; e.g., pectins, on leaves and fruit, but also attacks unique host wall polysaccharide substrates The diversity of the Botrytis CAZy proteins may be partly responsible for its wide host range. 4 biological replicates consisting of groups of infected berries from different plants
Project description:Transcriptomic analysis in response to Botrytis cinerea infections under conrasting nitrate regime Nitrogen (N) is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants. To better understand the molecular changes underlying the impact of nitrate availability on plant susceptibility to B. cinerea, we performed plant transcriptome profiling assays on mock-treated (3 biological replicates) and infected plants ( 3 biological replicates) grown under three N conditions, using GeneChip Tomato Genome Arrays (Affymetrix).